Show commands for:
SageMath
sage: E = EllipticCurve("s1")
sage: E.isogeny_class()
Elliptic curves in class 338130.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
338130.s1 | 338130s2 | [1, -1, 0, -2889765, -1887376775] | [2] | 8912896 | |
338130.s2 | 338130s1 | [1, -1, 0, -236745, -9569219] | [2] | 4456448 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 338130.s have rank \(1\).
Complex multiplication
The elliptic curves in class 338130.s do not have complex multiplication.Modular form 338130.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.