Properties

Label 338130.a
Number of curves $1$
Conductor $338130$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 338130.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
338130.a1 338130a1 \([1, -1, 0, -323241930, -12416733402300]\) \(-2541499591834369/43848960714000\) \(-64443044021189382583267194000\) \([]\) \(423014400\) \(4.2091\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 338130.a1 has rank \(0\).

Complex multiplication

The elliptic curves in class 338130.a do not have complex multiplication.

Modular form 338130.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - 4q^{7} - q^{8} + q^{10} - 5q^{11} - q^{13} + 4q^{14} + q^{16} + q^{19} + O(q^{20})\)  Toggle raw display