Properties

Label 33810q
Number of curves $2$
Conductor $33810$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 33810q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33810.r1 33810q1 \([1, 1, 0, -1152, -8784]\) \(1439069689/579600\) \(68189360400\) \([2]\) \(36864\) \(0.77676\) \(\Gamma_0(N)\)-optimal
33810.r2 33810q2 \([1, 1, 0, 3748, -58764]\) \(49471280711/41992020\) \(-4940319160980\) \([2]\) \(73728\) \(1.1233\)  

Rank

sage: E.rank()
 

The elliptic curves in class 33810q have rank \(1\).

Complex multiplication

The elliptic curves in class 33810q do not have complex multiplication.

Modular form 33810.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} - 2q^{11} - q^{12} - 4q^{13} - q^{15} + q^{16} + 6q^{17} - q^{18} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.