Properties

Label 33800.u1
Conductor 33800
Discriminant 178506250000
j-invariant \( \frac{43264}{25} \)
CM no
Rank 1
Torsion Structure \(\mathrm{Trivial}\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, 1, 0, -1408, 313]); // or
 
magma: E := EllipticCurve("33800d1");
 
sage: E = EllipticCurve([0, 1, 0, -1408, 313]) # or
 
sage: E = EllipticCurve("33800d1")
 
gp: E = ellinit([0, 1, 0, -1408, 313]) \\ or
 
gp: E = ellinit("33800d1")
 

\( y^2 = x^{3} + x^{2} - 1408 x + 313 \)

Mordell-Weil group structure

\(\Z\)

Infinite order Mordell-Weil generator and height

magma: Generators(E);
 
sage: E.gens()
 

\(P\) =  \( \left(-12, 125\right) \)
\(\hat{h}(P)\) ≈  1.00012881391

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 

\((-12,\pm 125)\), \((39,\pm 79)\)

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 33800 \)  =  \(2^{3} \cdot 5^{2} \cdot 13^{2}\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(178506250000 \)  =  \(2^{4} \cdot 5^{8} \cdot 13^{4} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( \frac{43264}{25} \)  =  \(2^{8} \cdot 5^{-2} \cdot 13^{2}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(1\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(1.00012881391\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(0.860476907881\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 8 \)  = \( 2\cdot2^{2}\cdot1 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(1\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 33800.2.a.u

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q + q^{3} + 3q^{7} - 2q^{9} - 3q^{11} + 3q^{17} - 5q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 27648
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L'(E,1) \) ≈ \( 6.8847019942 \)

Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( III \) Additive 1 3 4 0
\(5\) \(4\) \( I_2^{*} \) Additive 1 2 8 2
\(13\) \(1\) \( IV \) Additive 1 2 4 0

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X2a.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 1 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 3 \end{array}\right)$ and has index 4.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cn

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

Note: \(p\)-adic regulator data only exists for primes \(p\ge5\) of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ordinary add ordinary ordinary add ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) - 1 - 1 1 - 1 3 1 1 1,1 1 1 1 1
$\mu$-invariant(s) - 0 - 0 0 - 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has no rational isogenies. Its isogeny class 33800.u consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.169.1 \(\Z/2\Z \times \Z/2\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.