Properties

Label 33800.n
Number of curves 2
Conductor 33800
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("33800.n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 33800.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
33800.n1 33800m2 [0, 0, 0, -39715, 2965950] [2] 107520  
33800.n2 33800m1 [0, 0, 0, -5915, -109850] [2] 53760 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 33800.n have rank \(0\).

Modular form 33800.2.a.n

sage: E.q_eigenform(10)
 
\( q - 4q^{7} - 3q^{9} + 2q^{11} + 4q^{17} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.