Properties

Label 3380.d
Number of curves $1$
Conductor $3380$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3380.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3380.d1 3380c1 \([0, -1, 0, -5126, 34501]\) \(1141504/625\) \(8157307210000\) \([]\) \(7488\) \(1.1682\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3380.d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3380.d do not have complex multiplication.

Modular form 3380.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 5 q^{7} - 2 q^{9} - 5 q^{11} + q^{15} - q^{17} - 3 q^{19} + O(q^{20})\)  Toggle raw display