Learn more

Refine search


Results (18 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
3380.a1 3380.a \( 2^{2} \cdot 5 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.136184001$ $[0, 0, 0, -13, 13]$ \(y^2=x^3-13x+13\)
3380.b1 3380.b \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.474217901$ $[0, 0, 0, -2197, 28561]$ \(y^2=x^3-2197x+28561\)
3380.c1 3380.c \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.033348219$ $[0, 1, 0, -6985, -226992]$ \(y^2=x^3+x^2-6985x-226992\)
3380.c2 3380.c \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.516674109$ $[0, 1, 0, -6140, -283100]$ \(y^2=x^3+x^2-6140x-283100\)
3380.c3 3380.c \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.100044657$ $[0, 1, 0, -225, 820]$ \(y^2=x^3+x^2-225x+820\)
3380.c4 3380.c \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.550022328$ $[0, 1, 0, 620, 6228]$ \(y^2=x^3+x^2+620x+6228\)
3380.d1 3380.d \( 2^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -5126, 34501]$ \(y^2=x^3-x^2-5126x+34501\)
3380.e1 3380.e \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.098381589$ $[0, -1, 0, -30, 25]$ \(y^2=x^3-x^2-30x+25\)
3380.f1 3380.f \( 2^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -49066, -4142891]$ \(y^2=x^3+x^2-49066x-4142891\)
3380.f2 3380.f \( 2^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/3\Z$ $1$ $[0, 1, 0, -5126, 136865]$ \(y^2=x^3+x^2-5126x+136865\)
3380.g1 3380.g \( 2^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -14461386, -21172000615]$ \(y^2=x^3+x^2-14461386x-21172000615\)
3380.g2 3380.g \( 2^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -180886, -28292315]$ \(y^2=x^3+x^2-180886x-28292315\)
3380.h1 3380.h \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.452966372$ $[0, 1, 0, -85570, -9663107]$ \(y^2=x^3+x^2-85570x-9663107\)
3380.h2 3380.h \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/3\Z$ $0.817655457$ $[0, 1, 0, -1070, -13207]$ \(y^2=x^3+x^2-1070x-13207\)
3380.i1 3380.i \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.199470341$ $[0, 1, 0, -290, -1975]$ \(y^2=x^3+x^2-290x-1975\)
3380.i2 3380.i \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.598411024$ $[0, 1, 0, -30, 53]$ \(y^2=x^3+x^2-30x+53\)
3380.j1 3380.j \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.119722595$ $[0, -1, 0, -47545, 4006170]$ \(y^2=x^3-x^2-47545x+4006170\)
3380.j2 3380.j \( 2^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.559861297$ $[0, -1, 0, -46700, 4154552]$ \(y^2=x^3-x^2-46700x+4154552\)
  Download to