Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 338.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
338.d1 | 338e2 | \([1, 1, 1, -322, 2127]\) | \(-1680914269/32768\) | \(-71991296\) | \([]\) | \(120\) | \(0.30114\) | |
338.d2 | 338e1 | \([1, 1, 1, 3, -5]\) | \(1331/8\) | \(-17576\) | \([]\) | \(24\) | \(-0.50358\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 338.d have rank \(1\).
Complex multiplication
The elliptic curves in class 338.d do not have complex multiplication.Modular form 338.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.