Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
338.a1 |
338f2 |
338.a |
338f |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2 \cdot 13^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$728$ |
$96$ |
$2$ |
$1.383448027$ |
$1$ |
|
$0$ |
$2352$ |
$1.572269$ |
$-1064019559329/125497034$ |
$1.06269$ |
$7.43052$ |
$[1, -1, 0, -35944, -2868878]$ |
\(y^2+xy=x^3-x^2-35944x-2868878\) |
7.24.0.a.2, 56.48.0-7.a.2.6, 91.48.0.?, 104.2.0.?, 728.96.2.? |
$[(3613/3, 180227/3)]$ |
338.a2 |
338f1 |
338.a |
338f |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{7} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$728$ |
$96$ |
$2$ |
$0.197635432$ |
$1$ |
|
$6$ |
$336$ |
$0.599314$ |
$-2146689/1664$ |
$0.96784$ |
$5.29260$ |
$[1, -1, 0, -454, 5812]$ |
\(y^2+xy=x^3-x^2-454x+5812\) |
7.24.0.a.1, 56.48.0-7.a.1.6, 91.48.0.?, 104.2.0.?, 728.96.2.? |
$[(23, 73)]$ |
338.b1 |
338d2 |
338.b |
338d |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{15} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$1560$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$1560$ |
$1.583616$ |
$-1680914269/32768$ |
$1.02322$ |
$7.61805$ |
$[1, 1, 0, -54421, 4945517]$ |
\(y^2+xy=x^3+x^2-54421x+4945517\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[]$ |
338.b2 |
338d1 |
338.b |
338d |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$1560$ |
$576$ |
$17$ |
$1$ |
$1$ |
|
$0$ |
$312$ |
$0.778896$ |
$1331/8$ |
$0.93577$ |
$5.58427$ |
$[1, 1, 0, 504, -13112]$ |
\(y^2+xy=x^3+x^2+504x-13112\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[]$ |
338.c1 |
338a2 |
338.c |
338a |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1.188700458$ |
$1$ |
|
$4$ |
$84$ |
$0.196927$ |
$-38575685889/16384$ |
$1.08547$ |
$5.06720$ |
$[1, -1, 0, -389, -2859]$ |
\(y^2+xy=x^3-x^2-389x-2859\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$ |
$[(26, 51)]$ |
338.c2 |
338a1 |
338.c |
338a |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$0.169814351$ |
$1$ |
|
$6$ |
$12$ |
$-0.776028$ |
$351/4$ |
$1.27279$ |
$2.39029$ |
$[1, -1, 0, 1, 1]$ |
\(y^2+xy=x^3-x^2+x+1\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.48.0.?, $\ldots$ |
$[(0, 1)]$ |
338.d1 |
338e2 |
338.d |
338e |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{15} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$1560$ |
$576$ |
$17$ |
$0.030736550$ |
$1$ |
|
$16$ |
$120$ |
$0.301141$ |
$-1680914269/32768$ |
$1.02322$ |
$4.97516$ |
$[1, 1, 1, -322, 2127]$ |
\(y^2+xy+y=x^3+x^2-322x+2127\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(5, 23)]$ |
338.d2 |
338e1 |
338.d |
338e |
$2$ |
$5$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$1560$ |
$576$ |
$17$ |
$0.153682750$ |
$1$ |
|
$6$ |
$24$ |
$-0.503578$ |
$1331/8$ |
$0.93577$ |
$2.94138$ |
$[1, 1, 1, 3, -5]$ |
\(y^2+xy+y=x^3+x^2+3x-5\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(5, 10)]$ |
338.e1 |
338b2 |
338.e |
338b |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{14} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.16.0.2 |
7B.2.3 |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$1092$ |
$1.479403$ |
$-38575685889/16384$ |
$1.08547$ |
$7.71009$ |
$[1, -1, 1, -65773, -6478507]$ |
\(y^2+xy+y=x^3-x^2-65773x-6478507\) |
4.16.0-4.b.1.1, 7.16.0-7.a.1.1, 28.256.5-28.b.1.2, 91.48.0.?, 364.768.21.? |
$[]$ |
338.e2 |
338b1 |
338.e |
338b |
$2$ |
$7$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.16.0.2, 7.16.0.1 |
7B.2.1 |
$364$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$156$ |
$0.506447$ |
$351/4$ |
$1.27279$ |
$5.03319$ |
$[1, -1, 1, 137, 2643]$ |
\(y^2+xy+y=x^3-x^2+137x+2643\) |
4.16.0-4.b.1.1, 7.16.0-7.a.1.2, 28.256.5-28.b.2.2, 91.48.0.?, 364.768.21.? |
$[]$ |
338.f1 |
338c3 |
338.f |
338c |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1008$ |
$1.336861$ |
$-10730978619193/6656$ |
$1.02193$ |
$7.79555$ |
$[1, 0, 0, -77659, -8336303]$ |
\(y^2+xy=x^3-77659x-8336303\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.7, 39.8.0-3.a.1.2, 72.24.0.?, $\ldots$ |
$[]$ |
338.f2 |
338c2 |
338.f |
338c |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \) |
\( - 2^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$336$ |
$0.787555$ |
$-10218313/17576$ |
$0.94717$ |
$5.65146$ |
$[1, 0, 0, -764, -16264]$ |
\(y^2+xy=x^3-764x-16264\) |
3.12.0.a.1, 24.24.0-3.a.1.4, 39.24.0-3.a.1.1, 104.2.0.?, 117.72.0.?, $\ldots$ |
$[]$ |
338.f3 |
338c1 |
338.f |
338c |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \) |
\( - 2 \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$936$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$112$ |
$0.238249$ |
$12167/26$ |
$0.84415$ |
$4.42839$ |
$[1, 0, 0, 81, 467]$ |
\(y^2+xy=x^3+81x+467\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 39.8.0-3.a.1.1, 72.24.0.?, $\ldots$ |
$[]$ |