Properties

Label 33640.d1
Conductor 33640
Discriminant 640315408590080000
j-invariant \( \frac{1414562}{625} \)
CM no
Rank 0
Torsion Structure \(\mathrm{Trivial}\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, 1, 0, -235760, 21349408]); // or
 
magma: E := EllipticCurve("33640i1");
 
sage: E = EllipticCurve([0, 1, 0, -235760, 21349408]) # or
 
sage: E = EllipticCurve("33640i1")
 
gp: E = ellinit([0, 1, 0, -235760, 21349408]) \\ or
 
gp: E = ellinit("33640i1")
 

\( y^2 = x^{3} + x^{2} - 235760 x + 21349408 \)

Mordell-Weil group structure

Trivial

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 
None

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 33640 \)  =  \(2^{3} \cdot 5 \cdot 29^{2}\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(640315408590080000 \)  =  \(2^{11} \cdot 5^{4} \cdot 29^{8} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( \frac{1414562}{625} \)  =  \(2 \cdot 5^{-4} \cdot 29^{4}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(0\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(1\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(0.259238734878\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 4 \)  = \( 1\cdot2^{2}\cdot1 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(1\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 33640.2.a.d

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q - 2q^{3} + q^{5} + 3q^{7} + q^{9} - 4q^{11} - 2q^{13} - 2q^{15} - 3q^{17} - 2q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 389760
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L(E,1) \) ≈ \( 1.03695493951 \)

Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(1\) \( II^{*} \) Additive -1 3 11 0
\(5\) \(4\) \( I_{4} \) Split multiplicative -1 1 4 4
\(29\) \(1\) \( IV^{*} \) Additive -1 2 8 0

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X5.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 5 & 5 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 0 & 1 \\ 1 & 1 \end{array}\right)$ and has index 2.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ordinary split ordinary ordinary ordinary ordinary ordinary ordinary add ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) - 2 1 0 0 0 0 0 2 - 0 0 0 0 0
$\mu$-invariant(s) - 0 0 0 0 0 0 0 0 - 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has no rational isogenies. Its isogeny class 33640.d consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.6728.1 \(\Z/2\Z\) Not in database
6 6.6.362127872.1 \(\Z/2\Z \times \Z/2\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.