# Properties

 Label 3360z4 Conductor $3360$ Discriminant $-8.066\times 10^{12}$ j-invariant $$-\frac{2671731885376}{1969120125}$$ CM no Rank $1$ Torsion structure $$\Z/{4}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -4625, 181023])

gp: E = ellinit([0, 1, 0, -4625, 181023])

magma: E := EllipticCurve([0, 1, 0, -4625, 181023]);

$$y^2=x^3+x^2-4625x+181023$$

## Mordell-Weil group structure

$$\Z\times \Z/{4}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(1, 420\right)$$ $$\hat{h}(P)$$ ≈ $0.25926333923928452447102215180$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(43, 252\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-83, 0\right)$$, $$(-69,\pm 420)$$, $$(-62,\pm 483)$$, $$(-29,\pm 540)$$, $$(1,\pm 420)$$, $$(43,\pm 252)$$, $$(61,\pm 360)$$, $$(67,\pm 420)$$, $$(106,\pm 945)$$, $$(211,\pm 2940)$$, $$(673,\pm 17388)$$, $$(1051,\pm 34020)$$, $$(16771,\pm 2171940)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$3360$$ = $$2^{5} \cdot 3 \cdot 5 \cdot 7$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-8065516032000$$ = $$-1 \cdot 2^{12} \cdot 3^{8} \cdot 5^{3} \cdot 7^{4}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{2671731885376}{1969120125}$$ = $$-1 \cdot 2^{6} \cdot 3^{-8} \cdot 5^{-3} \cdot 7^{-4} \cdot 3469^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$1.1759628512805334789394690081\dots$$ Stable Faltings height: $$0.48281567072058816952223688664\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.25926333923928452447102215180\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.67884768119261259006542995768\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$384$$  = $$2^{2}\cdot2^{3}\cdot3\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + q^{5} + q^{7} + q^{9} - 4q^{11} - 2q^{13} + q^{15} - 2q^{17} - 8q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 6144 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$4.2240075998602076835895668184198722219$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_3^{*}$$ Additive -1 5 12 0
$$3$$ $$8$$ $$I_{8}$$ Split multiplicative -1 1 8 8
$$5$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3
$$7$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13h.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add split split split ordinary ordinary ordinary ordinary ss ordinary ss ordinary ordinary ordinary ordinary - 2 4 2 1 1 1 1 1,1 1 1,1 1 1 1 1 - 0 0 0 0 0 0 0 0,0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 3360z consists of 3 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-5})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ 4.2.250880.6 $$\Z/8\Z$$ Not in database $8$ 8.0.1024000000.6 $$\Z/4\Z \times \Z/4\Z$$ Not in database $8$ 8.0.6294077440000.17 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.157351936000000.76 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.2.27874423406592.17 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.