Properties

Label 3360v
Number of curves $4$
Conductor $3360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3360v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3360.v3 3360v1 \([0, 1, 0, -890, -10200]\) \(1219555693504/43758225\) \(2800526400\) \([2, 2]\) \(1536\) \(0.58297\) \(\Gamma_0(N)\)-optimal
3360.v1 3360v2 \([0, 1, 0, -14120, -650532]\) \(608119035935048/826875\) \(423360000\) \([2]\) \(3072\) \(0.92955\)  
3360.v2 3360v3 \([0, 1, 0, -2240, 26520]\) \(2428799546888/778248135\) \(398463045120\) \([2]\) \(3072\) \(0.92955\)  
3360.v4 3360v4 \([0, 1, 0, 335, -34945]\) \(1012048064/130203045\) \(-533311672320\) \([4]\) \(3072\) \(0.92955\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3360v have rank \(0\).

Complex multiplication

The elliptic curves in class 3360v do not have complex multiplication.

Modular form 3360.2.a.v

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - q^{7} + q^{9} + 2q^{13} + q^{15} - 2q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.