# Properties

 Label 3360q3 Conductor $3360$ Discriminant $4898880000$ j-invariant $$\frac{229625675762164624948320008}{9568125}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Oscar / PariGP / SageMath

## Simplified equation

 $$y^2=x^3-x^2-102060000x+396888659352$$ y^2=x^3-x^2-102060000x+396888659352 (homogenize, simplify) $$y^2z=x^3-x^2z-102060000xz^2+396888659352z^3$$ y^2z=x^3-x^2z-102060000xz^2+396888659352z^3 (dehomogenize, simplify) $$y^2=x^3-8266860027x+289307032087554$$ y^2=x^3-8266860027x+289307032087554 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([0, -1, 0, -102060000, 396888659352])

gp: E = ellinit([0, -1, 0, -102060000, 396888659352])

magma: E := EllipticCurve([0, -1, 0, -102060000, 396888659352]);

oscar: E = EllipticCurve([0, -1, 0, -102060000, 396888659352])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

## Mordell-Weil group structure

$$\Z/{2}\Z$$

magma: MordellWeilGroup(E);

## Torsion generators

$$\left(5833, 0\right)$$

comment: Torsion subgroup

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

oscar: torsion_structure(E)

## Integral points

$$\left(5833, 0\right)$$

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

## Invariants

 Conductor: $$3360$$ = $2^{5} \cdot 3 \cdot 5 \cdot 7$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $4898880000$ = $2^{9} \cdot 3^{7} \cdot 5^{4} \cdot 7$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$\frac{229625675762164624948320008}{9568125}$$ = $2^{3} \cdot 3^{-7} \cdot 5^{-4} \cdot 7^{-1} \cdot 306180001^{3}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $2.7599875578878890171728697676\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $2.2401271724679300351099456765\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E)

## BSD invariants

 Analytic rank: $0$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $1$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $0.33734913038941116397484443901\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $4$  = $1\cdot1\cdot2^{2}\cdot1$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $2$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $4$ = $2^2$ (exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L(E,1)$ ≈ $1.3493965215576446558993777560$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

## BSD formula

$\displaystyle 1.349396522 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.337349 \cdot 1.000000 \cdot 4}{2^2} \approx 1.349396522$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

## Modular invariants

$$q - q^{3} + q^{5} + q^{7} + q^{9} - 4 q^{11} - 6 q^{13} - q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

Modular degree: 215040
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: no
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_0^{*}$ Additive -1 5 9 0
$3$ $1$ $I_{7}$ Non-split multiplicative 1 1 7 7
$5$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

## Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.12.0.6

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[1, 0, 8, 1], [1, 8, 0, 1], [64, 3, 61, 2], [7, 6, 162, 163], [64, 155, 25, 54], [161, 8, 160, 9], [55, 60, 58, 145], [124, 1, 167, 6], [1, 4, 4, 17]]

GL(2,Integers(168)).subgroup(gens)

Gens := [[1, 0, 8, 1], [1, 8, 0, 1], [64, 3, 61, 2], [7, 6, 162, 163], [64, 155, 25, 54], [161, 8, 160, 9], [55, 60, 58, 145], [124, 1, 167, 6], [1, 4, 4, 17]];

sub<GL(2,Integers(168))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$168 = 2^{3} \cdot 3 \cdot 7$$, index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 64 & 3 \\ 61 & 2 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 162 & 163 \end{array}\right),\left(\begin{array}{rr} 64 & 155 \\ 25 & 54 \end{array}\right),\left(\begin{array}{rr} 161 & 8 \\ 160 & 9 \end{array}\right),\left(\begin{array}{rr} 55 & 60 \\ 58 & 145 \end{array}\right),\left(\begin{array}{rr} 124 & 1 \\ 167 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[168])$ is a degree-$3096576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.

## Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 3360q consists of 4 curves linked by isogenies of degrees dividing 4.

## Twists

This elliptic curve is its own minimal quadratic twist.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{42})$$ $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{7})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{6})$$ $$\Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{6}, \sqrt{7})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ 4.4.526848.2 $$\Z/8\Z$$ Not in database $8$ 8.0.359729184374784.48 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.0.599298932736.6 $$\Z/8\Z$$ Not in database $8$ 8.8.39969909374976.6 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ deg 8 $$\Z/6\Z$$ Not in database $16$ deg 16 $$\Z/4\Z \oplus \Z/4\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ deg 16 $$\Z/16\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $16$ deg 16 $$\Z/12\Z$$ Not in database $16$ deg 16 $$\Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 add nonsplit split split - 0 1 1 - 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## $p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.