Show commands: SageMath
Rank
The elliptic curves in class 3360q have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 3360q do not have complex multiplication.Modular form 3360.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3360q
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 3360.h3 | 3360q1 | \([0, -1, 0, -6378750, 6202979352]\) | \(448487713888272974160064/91549016015625\) | \(5859137025000000\) | \([2, 2]\) | \(107520\) | \(2.4134\) | \(\Gamma_0(N)\)-optimal |
| 3360.h2 | 3360q2 | \([0, -1, 0, -6400625, 6158314977]\) | \(7079962908642659949376/100085966990454375\) | \(409952120792901120000\) | \([2]\) | \(215040\) | \(2.7600\) | |
| 3360.h1 | 3360q3 | \([0, -1, 0, -102060000, 396888659352]\) | \(229625675762164624948320008/9568125\) | \(4898880000\) | \([2]\) | \(215040\) | \(2.7600\) | |
| 3360.h4 | 3360q4 | \([0, -1, 0, -6356880, 6247602900]\) | \(-55486311952875723077768/801237030029296875\) | \(-410233359375000000000\) | \([4]\) | \(215040\) | \(2.7600\) |