Show commands: SageMath
Rank
The elliptic curves in class 3360h have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 3360h do not have complex multiplication.Modular form 3360.2.a.h
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 3360h
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 3360.j1 | 3360h1 | \([0, -1, 0, -210, -900]\) | \(16079333824/2953125\) | \(189000000\) | \([2]\) | \(1152\) | \(0.30659\) | \(\Gamma_0(N)\)-optimal |
| 3360.j2 | 3360h2 | \([0, -1, 0, 415, -5775]\) | \(1925134784/4465125\) | \(-18289152000\) | \([2]\) | \(2304\) | \(0.65316\) |