Show commands for:
SageMath
sage: E = EllipticCurve("y1")
sage: E.isogeny_class()
Elliptic curves in class 33600y
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
33600.dq3 | 33600y1 | [0, -1, 0, -5633, -100863] | [2] | 73728 | \(\Gamma_0(N)\)-optimal |
33600.dq2 | 33600y2 | [0, -1, 0, -37633, 2747137] | [2, 2] | 147456 | |
33600.dq4 | 33600y3 | [0, -1, 0, 10367, 9227137] | [2] | 294912 | |
33600.dq1 | 33600y4 | [0, -1, 0, -597633, 178027137] | [2] | 294912 |
Rank
sage: E.rank()
The elliptic curves in class 33600y have rank \(0\).
Complex multiplication
The elliptic curves in class 33600y do not have complex multiplication.Modular form 33600.2.a.y
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.