Show commands for:
SageMath
sage: E = EllipticCurve("33600.ej1")
sage: E.isogeny_class()
Elliptic curves in class 33600ce
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
33600.ej3 | 33600ce1 | [0, 1, 0, -4033, 92063] | [2] | 49152 | \(\Gamma_0(N)\)-optimal |
33600.ej2 | 33600ce2 | [0, 1, 0, -12033, -395937] | [2, 2] | 98304 | |
33600.ej4 | 33600ce3 | [0, 1, 0, 27967, -2435937] | [2] | 196608 | |
33600.ej1 | 33600ce4 | [0, 1, 0, -180033, -29459937] | [2] | 196608 |
Rank
sage: E.rank()
The elliptic curves in class 33600ce have rank \(0\).
Modular form 33600.2.a.ej
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.