# Properties

 Label 33600.en Number of curves 8 Conductor 33600 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("33600.en1")

sage: E.isogeny_class()

## Elliptic curves in class 33600.en

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
33600.en1 33600cd8 [0, 1, 0, -561972033, -5127858515937] [2] 5308416
33600.en2 33600cd6 [0, 1, 0, -35124033, -80127827937] [2, 2] 2654208
33600.en3 33600cd7 [0, 1, 0, -32564033, -92300627937] [2] 5308416
33600.en4 33600cd5 [0, 1, 0, -6972033, -6963515937] [2] 1769472
33600.en5 33600cd3 [0, 1, 0, -2356033, -1058643937] [2] 1327104
33600.en6 33600cd2 [0, 1, 0, -924033, 179172063] [2, 2] 884736
33600.en7 33600cd1 [0, 1, 0, -796033, 272996063] [2] 442368 $$\Gamma_0(N)$$-optimal
33600.en8 33600cd4 [0, 1, 0, 3075967, 1319172063] [2] 1769472

## Rank

sage: E.rank()

The elliptic curves in class 33600.en have rank $$0$$.

## Modular form 33600.2.a.en

sage: E.q_eigenform(10)

$$q + q^{3} - q^{7} + q^{9} + 2q^{13} + 6q^{17} - 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 3 & 4 & 6 & 12 & 12 \\ 2 & 1 & 2 & 6 & 2 & 3 & 6 & 6 \\ 4 & 2 & 1 & 12 & 4 & 6 & 12 & 3 \\ 3 & 6 & 12 & 1 & 12 & 2 & 4 & 4 \\ 4 & 2 & 4 & 12 & 1 & 6 & 3 & 12 \\ 6 & 3 & 6 & 2 & 6 & 1 & 2 & 2 \\ 12 & 6 & 12 & 4 & 3 & 2 & 1 & 4 \\ 12 & 6 & 3 & 4 & 12 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.