# Properties

 Label 3360.r Number of curves $2$ Conductor $3360$ CM no Rank $1$ Graph

# Related objects

Show commands: SageMath
sage: E = EllipticCurve("r1")

sage: E.isogeny_class()

## Elliptic curves in class 3360.r

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3360.r1 3360j1 $$[0, 1, 0, -26, -60]$$ $$31554496/525$$ $$33600$$ $$[2]$$ $$384$$ $$-0.33299$$ $$\Gamma_0(N)$$-optimal
3360.r2 3360j2 $$[0, 1, 0, -1, -145]$$ $$-64/2205$$ $$-9031680$$ $$[2]$$ $$768$$ $$0.013582$$

## Rank

sage: E.rank()

The elliptic curves in class 3360.r have rank $$1$$.

## Complex multiplication

The elliptic curves in class 3360.r do not have complex multiplication.

## Modular form3360.2.a.r

sage: E.q_eigenform(10)

$$q + q^{3} - q^{5} + q^{7} + q^{9} + 2 q^{11} - q^{15} - 6 q^{17} - 6 q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.