Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-6356880x+6247602900\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-6356880xz^2+6247602900z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-514907307x+4552957792206\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Torsion generators
\( \left(1460, 8750\right) \)
Integral points
\( \left(-2915, 0\right) \), \((1460,\pm 8750)\)
Invariants
Conductor: | \( 3360 \) | = | $2^{5} \cdot 3 \cdot 5 \cdot 7$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-410233359375000000000 $ | = | $-1 \cdot 2^{9} \cdot 3^{7} \cdot 5^{16} \cdot 7^{4} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{55486311952875723077768}{801237030029296875} \) | = | $-1 \cdot 2^{3} \cdot 3^{-7} \cdot 5^{-16} \cdot 7^{-4} \cdot 2999^{3} \cdot 6359^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $2.7599875578878890171728697676\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $2.2401271724679300351099456765\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.16867456519470558198742221950\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 128 $ = $ 2\cdot1\cdot2^{4}\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 1.3493965215576446558993777560 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.349396522 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.168675 \cdot 1.000000 \cdot 128}{4^2} \approx 1.349396522$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 215040 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_0^{*}$ | Additive | -1 | 5 | 9 | 0 |
$3$ | $1$ | $I_{7}$ | Non-split multiplicative | 1 | 1 | 7 | 7 |
$5$ | $16$ | $I_{16}$ | Split multiplicative | -1 | 1 | 16 | 16 |
$7$ | $4$ | $I_{4}$ | Split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 73 & 8 \\ 124 & 33 \end{array}\right),\left(\begin{array}{rr} 24 & 113 \\ 139 & 126 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 161 & 8 \\ 160 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 162 & 163 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 116 & 1 \\ 79 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 24 \\ 118 & 31 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$3096576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 3360.h
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | 4.2.75264.1 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.12230590464.4 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.7341411926016.10 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.0.815712436224.16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | deg 8 | \(\Z/12\Z\) | Not in database |
$16$ | deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | add | nonsplit | split | split |
$\lambda$-invariant(s) | - | 0 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.