Minimal Weierstrass equation
\( y^2 = x^{3} - x^{2} - 12544 x + 544960 \)
Mordell-Weil group structure
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(90, 370\right) \) |
\(\hat{h}(P)\) | ≈ | 2.98519683478 |
Torsion generators
\( \left(66, 14\right) \)
Integral points
\( \left(65, 0\right) \), \( \left(66, 14\right) \), \( \left(90, 370\right) \), \( \left(101, 546\right) \)
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 336 \) | = | \(2^{4} \cdot 3 \cdot 7\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(602112 \) | = | \(2^{12} \cdot 3 \cdot 7^{2} \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( \frac{53297461115137}{147} \) | = | \(3^{-1} \cdot 7^{-2} \cdot 37633^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(1\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(2.98519683478\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(1.91098978075\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 4 \) = \( 2\cdot1\cdot2 \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(4\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 336.2.a.a
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 256 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L'(E,1) \) ≈ \( 1.4261701612 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \( I_4^{*} \) | Additive | -1 | 4 | 12 | 0 |
\(3\) | \(1\) | \( I_{1} \) | Non-split multiplicative | 1 | 1 | 1 | 1 |
\(7\) | \(2\) | \( I_{2} \) | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X122d.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 5 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right)$ and has index 48.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ordinary | split | ordinary | ordinary | ordinary | ordinary | ss | ordinary | ss | ordinary | ordinary | ordinary | ss |
$\lambda$-invariant(s) | - | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class 336.a
consists of 6 curves linked by isogenies of
degrees dividing 8.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \times \Z/4\Z\) | 2.2.12.1-147.1-b7 |
\(\Q(\sqrt{14}) \) | \(\Z/8\Z\) | Not in database | |
\(\Q(\sqrt{42}) \) | \(\Z/8\Z\) | Not in database | |
4 | \(\Q(\sqrt{3}, \sqrt{14})\) | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.