Show commands for:
SageMath
sage: E = EllipticCurve("k1")
sage: E.isogeny_class()
Elliptic curves in class 333795.k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
333795.k1 | 333795k6 | [1, 1, 1, -881218806, -10069075235706] | [2] | 39321600 | |
333795.k2 | 333795k4 | [1, 1, 1, -55076181, -157346478006] | [2, 2] | 19660800 | |
333795.k3 | 333795k5 | [1, 1, 1, -54803076, -158983797102] | [2] | 39321600 | |
333795.k4 | 333795k3 | [1, 1, 1, -7353611, 4044513098] | [2] | 19660800 | |
333795.k5 | 333795k2 | [1, 1, 1, -3459336, -2434002792] | [2, 2] | 9830400 | |
333795.k6 | 333795k1 | [1, 1, 1, 10109, -113637976] | [2] | 4915200 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 333795.k have rank \(0\).
Complex multiplication
The elliptic curves in class 333795.k do not have complex multiplication.Modular form 333795.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 4 & 8 \\ 2 & 1 & 2 & 4 & 2 & 4 \\ 4 & 2 & 1 & 8 & 4 & 8 \\ 8 & 4 & 8 & 1 & 2 & 4 \\ 4 & 2 & 4 & 2 & 1 & 2 \\ 8 & 4 & 8 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.