## Results (1-50 of 318 matches)

Label Class Conductor Rank Torsion CM Weierstrass equation
333270.a1 333270.a $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-68848920x+213891710400$$
333270.a2 333270.a $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+1233000x+11340945216$$
333270.b1 333270.b $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-794282490x-8615870573094$$
333270.b2 333270.b $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-50376240x-130429541844$$
333270.b3 333270.b $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-13526100x-2047253400$$
333270.b4 333270.b $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-8765100x+9947610000$$
333270.c1 333270.c $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-58089060x+170299441066$$
333270.c2 333270.c $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-4432590x+1399604800$$
333270.d1 333270.d $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-21381750x-38048993780$$
333270.d2 333270.d $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-5765670x+4777229596$$
333270.d3 333270.d $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-1385550x-548120300$$
333270.d4 333270.d $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+137970x-45663404$$
333270.e1 333270.e $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+5970195x+42550771365$$
333270.f1 333270.f $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-19808597655x-1412114152496099$$
333270.g1 333270.g $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-2688351120x+53651387027200$$
333270.g2 333270.g $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-165402000x+865740948736$$
333270.h1 333270.h $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-13549905x+16482439575$$
333270.h2 333270.h $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-3694635x-2481070959$$
333270.h3 333270.h $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-3599415x-2627500275$$
333270.h4 333270.h $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+4637115x-12074247909$$
333270.i1 333270.i $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-174241590x+885313504376$$
333270.i2 333270.i $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-10939290x+13703808356$$
333270.i3 333270.i $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-1417290x-325906444$$
333270.i4 333270.i $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+11010x+39881595536$$
333270.j1 333270.j $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-9079493715x+333230512342581$$
333270.k1 333270.k $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-13071735x-18187371909$$
333270.k2 333270.k $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-161145x-24988635$$
333270.l1 333270.l $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-1755x-89019$$
333270.m1 333270.m $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-8050950x-8714672064$$
333270.m2 333270.m $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-2099700x-21315848814$$
333270.m3 333270.m $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-719010x+228028500$$
333270.m4 333270.m $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+233190x+787350780$$
333270.n1 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-30713310x+41225237550$$
333270.n2 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-27428220x+55296592056$$
333270.n3 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-12859560x-17274359700$$
333270.n4 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-12764340x-17549564544$$
333270.n5 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-1718820x+859508496$$
333270.n6 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-385740x+2157661800$$
333270.n7 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-195300x-11640240$$
333270.n8 333270.n $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+3470670x-58161989574$$
333270.o1 333270.o $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-467606475x+3892072260325$$
333270.o2 333270.o $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-29594475x+59204453125$$
333270.o3 333270.o $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-5218155x-3398811899$$
333270.o4 333270.o $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2+18396405x+232653091621$$
333270.p1 333270.p $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2-21371400x-38260237464$$
333270.p2 333270.p $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\mathsf{trivial}$ $$y^2+xy=x^3-x^2+761040x-279763200$$
333270.q1 333270.q $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-1208813215275x-479961801250248339$$
333270.q2 333270.q $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2+xy=x^3-x^2-1187959463955x-498365858231937675$$
333270.q3 333270.q $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-1187957940435x-498367200428986059$$
333270.q4 333270.q $$2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2}$$ $1$ $\Z/2\Z$ $$y^2+xy=x^3-x^2-1167130088955x-516684014620812675$$