Learn more

Refine search


Results (1-50 of 318 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
333270.a1 333270.a \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.618679006$ $[1, -1, 0, -68848920, 213891710400]$ \(y^2+xy=x^3-x^2-68848920x+213891710400\)
333270.a2 333270.a \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.809339503$ $[1, -1, 0, 1233000, 11340945216]$ \(y^2+xy=x^3-x^2+1233000x+11340945216\)
333270.b1 333270.b \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $9.066528824$ $[1, -1, 0, -794282490, -8615870573094]$ \(y^2+xy=x^3-x^2-794282490x-8615870573094\)
333270.b2 333270.b \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.533264412$ $[1, -1, 0, -50376240, -130429541844]$ \(y^2+xy=x^3-x^2-50376240x-130429541844\)
333270.b3 333270.b \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $3.022176274$ $[1, -1, 0, -13526100, -2047253400]$ \(y^2+xy=x^3-x^2-13526100x-2047253400\)
333270.b4 333270.b \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.511088137$ $[1, -1, 0, -8765100, 9947610000]$ \(y^2+xy=x^3-x^2-8765100x+9947610000\)
333270.c1 333270.c \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.857438072$ $[1, -1, 0, -58089060, 170299441066]$ \(y^2+xy=x^3-x^2-58089060x+170299441066\)
333270.c2 333270.c \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.714876145$ $[1, -1, 0, -4432590, 1399604800]$ \(y^2+xy=x^3-x^2-4432590x+1399604800\)
333270.d1 333270.d \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $8.643557410$ $[1, -1, 0, -21381750, -38048993780]$ \(y^2+xy=x^3-x^2-21381750x-38048993780\)
333270.d2 333270.d \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.160889352$ $[1, -1, 0, -5765670, 4777229596]$ \(y^2+xy=x^3-x^2-5765670x+4777229596\)
333270.d3 333270.d \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.321778705$ $[1, -1, 0, -1385550, -548120300]$ \(y^2+xy=x^3-x^2-1385550x-548120300\)
333270.d4 333270.d \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $8.643557410$ $[1, -1, 0, 137970, -45663404]$ \(y^2+xy=x^3-x^2+137970x-45663404\)
333270.e1 333270.e \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $33.05508987$ $[1, -1, 0, 5970195, 42550771365]$ \(y^2+xy=x^3-x^2+5970195x+42550771365\)
333270.f1 333270.f \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $396.4901554$ $[1, -1, 0, -19808597655, -1412114152496099]$ \(y^2+xy=x^3-x^2-19808597655x-1412114152496099\)
333270.g1 333270.g \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $9.818037704$ $[1, -1, 0, -2688351120, 53651387027200]$ \(y^2+xy=x^3-x^2-2688351120x+53651387027200\)
333270.g2 333270.g \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.909018852$ $[1, -1, 0, -165402000, 865740948736]$ \(y^2+xy=x^3-x^2-165402000x+865740948736\)
333270.h1 333270.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.231775402$ $[1, -1, 0, -13549905, 16482439575]$ \(y^2+xy=x^3-x^2-13549905x+16482439575\)
333270.h2 333270.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.463550805$ $[1, -1, 0, -3694635, -2481070959]$ \(y^2+xy=x^3-x^2-3694635x-2481070959\)
333270.h3 333270.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.927101610$ $[1, -1, 0, -3599415, -2627500275]$ \(y^2+xy=x^3-x^2-3599415x-2627500275\)
333270.h4 333270.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.927101610$ $[1, -1, 0, 4637115, -12074247909]$ \(y^2+xy=x^3-x^2+4637115x-12074247909\)
333270.i1 333270.i \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.463147005$ $[1, -1, 0, -174241590, 885313504376]$ \(y^2+xy=x^3-x^2-174241590x+885313504376\)
333270.i2 333270.i \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.731573502$ $[1, -1, 0, -10939290, 13703808356]$ \(y^2+xy=x^3-x^2-10939290x+13703808356\)
333270.i3 333270.i \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.463147005$ $[1, -1, 0, -1417290, -325906444]$ \(y^2+xy=x^3-x^2-1417290x-325906444\)
333270.i4 333270.i \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.463147005$ $[1, -1, 0, 11010, 39881595536]$ \(y^2+xy=x^3-x^2+11010x+39881595536\)
333270.j1 333270.j \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $44.36029878$ $[1, -1, 0, -9079493715, 333230512342581]$ \(y^2+xy=x^3-x^2-9079493715x+333230512342581\)
333270.k1 333270.k \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $66.14414906$ $[1, -1, 0, -13071735, -18187371909]$ \(y^2+xy=x^3-x^2-13071735x-18187371909\)
333270.k2 333270.k \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $22.04804968$ $[1, -1, 0, -161145, -24988635]$ \(y^2+xy=x^3-x^2-161145x-24988635\)
333270.l1 333270.l \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $8.700379865$ $[1, -1, 0, -1755, -89019]$ \(y^2+xy=x^3-x^2-1755x-89019\)
333270.m1 333270.m \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $14.47133383$ $[1, -1, 0, -8050950, -8714672064]$ \(y^2+xy=x^3-x^2-8050950x-8714672064\)
333270.m2 333270.m \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $28.94266767$ $[1, -1, 0, -2099700, -21315848814]$ \(y^2+xy=x^3-x^2-2099700x-21315848814\)
333270.m3 333270.m \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.823777946$ $[1, -1, 0, -719010, 228028500]$ \(y^2+xy=x^3-x^2-719010x+228028500\)
333270.m4 333270.m \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $9.647555892$ $[1, -1, 0, 233190, 787350780]$ \(y^2+xy=x^3-x^2+233190x+787350780\)
333270.n1 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $15.49216855$ $[1, -1, 0, -30713310, 41225237550]$ \(y^2+xy=x^3-x^2-30713310x+41225237550\)
333270.n2 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.164056184$ $[1, -1, 0, -27428220, 55296592056]$ \(y^2+xy=x^3-x^2-27428220x+55296592056\)
333270.n3 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.746084276$ $[1, -1, 0, -12859560, -17274359700]$ \(y^2+xy=x^3-x^2-12859560x-17274359700\)
333270.n4 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $15.49216855$ $[1, -1, 0, -12764340, -17549564544]$ \(y^2+xy=x^3-x^2-12764340x-17549564544\)
333270.n5 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.582028092$ $[1, -1, 0, -1718820, 859508496]$ \(y^2+xy=x^3-x^2-1718820x+859508496\)
333270.n6 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.164056184$ $[1, -1, 0, -385740, 2157661800]$ \(y^2+xy=x^3-x^2-385740x+2157661800\)
333270.n7 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.164056184$ $[1, -1, 0, -195300, -11640240]$ \(y^2+xy=x^3-x^2-195300x-11640240\)
333270.n8 333270.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $15.49216855$ $[1, -1, 0, 3470670, -58161989574]$ \(y^2+xy=x^3-x^2+3470670x-58161989574\)
333270.o1 333270.o \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $3.278971074$ $[1, -1, 0, -467606475, 3892072260325]$ \(y^2+xy=x^3-x^2-467606475x+3892072260325\)
333270.o2 333270.o \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.557942149$ $[1, -1, 0, -29594475, 59204453125]$ \(y^2+xy=x^3-x^2-29594475x+59204453125\)
333270.o3 333270.o \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $13.11588429$ $[1, -1, 0, -5218155, -3398811899]$ \(y^2+xy=x^3-x^2-5218155x-3398811899\)
333270.o4 333270.o \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $13.11588429$ $[1, -1, 0, 18396405, 232653091621]$ \(y^2+xy=x^3-x^2+18396405x+232653091621\)
333270.p1 333270.p \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $60.28671070$ $[1, -1, 0, -21371400, -38260237464]$ \(y^2+xy=x^3-x^2-21371400x-38260237464\)
333270.p2 333270.p \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $20.09557023$ $[1, -1, 0, 761040, -279763200]$ \(y^2+xy=x^3-x^2+761040x-279763200\)
333270.q1 333270.q \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $70.21727786$ $[1, -1, 0, -1208813215275, -479961801250248339]$ \(y^2+xy=x^3-x^2-1208813215275x-479961801250248339\)
333270.q2 333270.q \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $140.4345557$ $[1, -1, 0, -1187959463955, -498365858231937675]$ \(y^2+xy=x^3-x^2-1187959463955x-498365858231937675\)
333270.q3 333270.q \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $280.8691114$ $[1, -1, 0, -1187957940435, -498367200428986059]$ \(y^2+xy=x^3-x^2-1187957940435x-498367200428986059\)
333270.q4 333270.q \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23^{2} \) $1$ $\Z/2\Z$ $280.8691114$ $[1, -1, 0, -1167130088955, -516684014620812675]$ \(y^2+xy=x^3-x^2-1167130088955x-516684014620812675\)
Next   Download to