Properties

Label 333200de
Number of curves $1$
Conductor $333200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("de1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 333200de1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 333200de do not have complex multiplication.

Modular form 333200.2.a.de

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{9} - 2 q^{11} - 4 q^{13} + q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 333200de

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
333200.de1 333200de1 \([0, 0, 0, -6422675, -6273212750]\) \(-3241463778/4913\) \(-44409628746784000000\) \([]\) \(10725120\) \(2.6701\) \(\Gamma_0(N)\)-optimal