Properties

Label 3332.f
Number of curves $1$
Conductor $3332$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 3332.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3332.f1 3332f1 \([0, 0, 0, -16807, 840350]\) \(-7260624/17\) \(-1229332283648\) \([]\) \(16128\) \(1.2002\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3332.f1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3332.f do not have complex multiplication.

Modular form 3332.2.a.f

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} - 4 q^{5} + 6 q^{9} + q^{11} - 3 q^{13} - 12 q^{15} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display