Properties

Label 3332.e
Number of curves $1$
Conductor $3332$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 3332.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3332.e1 3332d1 \([0, 1, 0, 12, 20]\) \(14000/17\) \(-213248\) \([]\) \(288\) \(-0.29133\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3332.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3332.e do not have complex multiplication.

Modular form 3332.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{9} - 5 q^{11} + 5 q^{13} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display