Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 3332.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3332.d1 | 3332a1 | \([0, 1, 0, -213460, 53246164]\) | \(-728871512656/410338673\) | \(-605573322866962688\) | \([]\) | \(56448\) | \(2.1153\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 3332.d1 has rank \(0\).
Complex multiplication
The elliptic curves in class 3332.d do not have complex multiplication.Modular form 3332.2.a.d
sage: E.q_eigenform(10)