Properties

Label 3332.d
Number of curves $1$
Conductor $3332$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 3332.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3332.d1 3332a1 \([0, 1, 0, -213460, 53246164]\) \(-728871512656/410338673\) \(-605573322866962688\) \([]\) \(56448\) \(2.1153\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3332.d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3332.d do not have complex multiplication.

Modular form 3332.2.a.d

sage: E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{5} - 2 q^{9} - 3 q^{11} - 5 q^{13} - 4 q^{15} - q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display