Properties

Label 3332.c
Number of curves $1$
Conductor $3332$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 3332.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3332.c1 3332e1 \([0, -1, 0, -4356, -153992]\) \(-728871512656/410338673\) \(-5147288314112\) \([]\) \(8064\) \(1.1423\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3332.c1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3332.c do not have complex multiplication.

Modular form 3332.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} - 2 q^{9} - 3 q^{11} + 5 q^{13} - 4 q^{15} + q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display