Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-482x-3949\) | (homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-482xz^2-3949z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-7707x-260426\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(\frac{351}{4}, \frac{5963}{8}\right)\) |
$\hat{h}(P)$ | ≈ | $4.8945644992510655550138314986$ |
Integral points
None
Invariants
Conductor: | \( 3330 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 37$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-269730 $ | = | $-1 \cdot 2 \cdot 3^{6} \cdot 5 \cdot 37 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{16954786009}{370} \) | = | $-1 \cdot 2^{-1} \cdot 5^{-1} \cdot 7^{3} \cdot 37^{-1} \cdot 367^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.15809306287362059829512383088\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-0.39121308146043424740249878758\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.8841432415229432\dots$ | |||
Szpiro ratio: | $3.716747618994515\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $4.8945644992510655550138314986\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.50953925327506350605374719736\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 2 $ = $ 1\cdot2\cdot1\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 4.9879454801100461482519593928 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 4.987945480 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.509539 \cdot 4.894564 \cdot 2}{1^2} \approx 4.987945480$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 864 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$37$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.2 | 9.24.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 13320 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 37 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 3319 & 6642 \\ 6822 & 5075 \end{array}\right),\left(\begin{array}{rr} 13303 & 18 \\ 13302 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 9991 & 18 \\ 9999 & 163 \end{array}\right),\left(\begin{array}{rr} 6661 & 18 \\ 6669 & 163 \end{array}\right),\left(\begin{array}{rr} 10657 & 18 \\ 2673 & 163 \end{array}\right),\left(\begin{array}{rr} 11533 & 18 \\ 9729 & 511 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right)$.
The torsion field $K:=\Q(E[13320])$ is a degree-$36273255874560$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/13320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1665 = 3^{2} \cdot 5 \cdot 37 \) |
$3$ | additive | $2$ | \( 370 = 2 \cdot 5 \cdot 37 \) |
$5$ | split multiplicative | $6$ | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
$37$ | split multiplicative | $38$ | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 3330.v
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 370.a1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | 2.0.3.1-136900.2-c1 |
$3$ | 3.1.1480.1 | \(\Z/2\Z\) | not in database |
$3$ | 3.1.410700.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.3241792000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.506023470000.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.50602347.1 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.369630000.8 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.59140800.1 | \(\Z/6\Z\) | not in database |
$9$ | 9.1.1640422836858240000000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.129572244330949414435923000000000000.1 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.72656651259522968929394109235200000000000000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.726566512595229689293941092352000000.2 | \(\Z/18\Z\) | not in database |
$18$ | 18.0.38767561196462293756723200000000000000.1 | \(\Z/18\Z\) | not in database |
$18$ | 18.0.63722574141685329786964907655168000000000000000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | split | ord | ord | ord | ord | ord | ord | ord | ord | split | ord | ord | ord |
$\lambda$-invariant(s) | 12 | - | 4 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.