Properties

Label 3330.u
Number of curves $2$
Conductor $3330$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("u1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3330.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3330.u1 3330ba2 \([1, -1, 1, -63797, 6225869]\) \(-39390416456458249/56832000000\) \(-41430528000000\) \([3]\) \(17280\) \(1.5153\)  
3330.u2 3330ba1 \([1, -1, 1, 1138, 40061]\) \(223759095911/1094104800\) \(-797602399200\) \([]\) \(5760\) \(0.96602\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3330.u have rank \(1\).

Complex multiplication

The elliptic curves in class 3330.u do not have complex multiplication.

Modular form 3330.2.a.u

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} - q^{7} + q^{8} + q^{10} - 3q^{11} - 7q^{13} - q^{14} + q^{16} + 3q^{17} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.