Properties

Label 3330.p
Number of curves $1$
Conductor $3330$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3330.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3330.p1 3330q1 \([1, -1, 1, 112, 627]\) \(214921799/378880\) \(-276203520\) \([]\) \(1056\) \(0.30458\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3330.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3330.p do not have complex multiplication.

Modular form 3330.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - q^{10} - 3q^{11} + q^{14} + q^{16} - 3q^{17} - 6q^{19} + O(q^{20})\)  Toggle raw display