Properties

Label 3330.n
Number of curves $1$
Conductor $3330$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3330.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3330.n1 3330o1 \([1, -1, 1, -62333, -6089019]\) \(-991990479802737267/22190066240000\) \(-599131788480000\) \([]\) \(17280\) \(1.6240\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3330.n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3330.n do not have complex multiplication.

Modular form 3330.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - 3q^{7} + q^{8} - q^{10} - q^{11} + q^{13} - 3q^{14} + q^{16} + q^{17} + q^{19} + O(q^{20})\)  Toggle raw display