Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 3328.j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3328.j1 | 3328b2 | \([0, 1, 0, -29, -5317]\) | \(-85184/371293\) | \(-12166529024\) | \([]\) | \(1920\) | \(0.61410\) | |
3328.j2 | 3328b1 | \([0, 1, 0, -29, 59]\) | \(-85184/13\) | \(-425984\) | \([]\) | \(384\) | \(-0.19062\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3328.j have rank \(1\).
Complex multiplication
The elliptic curves in class 3328.j do not have complex multiplication.Modular form 3328.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.