Properties

Label 3328.j
Number of curves $2$
Conductor $3328$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 3328.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3328.j1 3328b2 \([0, 1, 0, -29, -5317]\) \(-85184/371293\) \(-12166529024\) \([]\) \(1920\) \(0.61410\)  
3328.j2 3328b1 \([0, 1, 0, -29, 59]\) \(-85184/13\) \(-425984\) \([]\) \(384\) \(-0.19062\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3328.j have rank \(1\).

Complex multiplication

The elliptic curves in class 3328.j do not have complex multiplication.

Modular form 3328.2.a.j

sage: E.q_eigenform(10)
 
\(q + q^{3} + 3 q^{5} - 3 q^{7} - 2 q^{9} - q^{13} + 3 q^{15} - 7 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.