Properties

Label 331200p
Number of curves $1$
Conductor $331200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 331200p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
331200.p1 331200p1 \([0, 0, 0, -283500, 102330000]\) \(-10001880/12167\) \(-3065383180800000000\) \([]\) \(6635520\) \(2.2409\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 331200p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 331200p do not have complex multiplication.

Modular form 331200.2.a.p

sage: E.q_eigenform(10)
 
\(q - 5 q^{7} + 4 q^{11} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display