Properties

Label 330.c
Number of curves $4$
Conductor $330$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 330.c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 330.c do not have complex multiplication.

Modular form 330.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 4 q^{7} + q^{8} + q^{9} - q^{10} - q^{11} - q^{12} + 2 q^{13} + 4 q^{14} + q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 330.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
330.c1 330d3 \([1, 1, 1, -1832906, -955821481]\) \(680995599504466943307169/52207031250000000\) \(52207031250000000\) \([2]\) \(8960\) \(2.2561\)  
330.c2 330d2 \([1, 1, 1, -122186, -12872617]\) \(201738262891771037089/45727545600000000\) \(45727545600000000\) \([2, 2]\) \(4480\) \(1.9095\)  
330.c3 330d1 \([1, 1, 1, -40266, 2921559]\) \(7220044159551112609/448454983680000\) \(448454983680000\) \([4]\) \(2240\) \(1.5629\) \(\Gamma_0(N)\)-optimal
330.c4 330d4 \([1, 1, 1, 277814, -79112617]\) \(2371297246710590562911/4084000833203280000\) \(-4084000833203280000\) \([2]\) \(8960\) \(2.2561\)