Show commands: SageMath
Rank
The elliptic curves in class 330.c have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 330.c do not have complex multiplication.Modular form 330.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 330.c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 330.c1 | 330d3 | \([1, 1, 1, -1832906, -955821481]\) | \(680995599504466943307169/52207031250000000\) | \(52207031250000000\) | \([2]\) | \(8960\) | \(2.2561\) | |
| 330.c2 | 330d2 | \([1, 1, 1, -122186, -12872617]\) | \(201738262891771037089/45727545600000000\) | \(45727545600000000\) | \([2, 2]\) | \(4480\) | \(1.9095\) | |
| 330.c3 | 330d1 | \([1, 1, 1, -40266, 2921559]\) | \(7220044159551112609/448454983680000\) | \(448454983680000\) | \([4]\) | \(2240\) | \(1.5629\) | \(\Gamma_0(N)\)-optimal |
| 330.c4 | 330d4 | \([1, 1, 1, 277814, -79112617]\) | \(2371297246710590562911/4084000833203280000\) | \(-4084000833203280000\) | \([2]\) | \(8960\) | \(2.2561\) |