Properties

Label 328510.bp
Number of curves $4$
Conductor $328510$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 328510.bp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 328510.bp do not have complex multiplication.

Modular form 328510.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{7} + q^{8} - 3 q^{9} - q^{10} + 4 q^{11} + q^{13} + q^{14} + q^{16} + 2 q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 328510.bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
328510.bp1 328510bp3 \([1, -1, 1, -39363508, 95065018231]\) \(143378317900125424089/4976562500000\) \(234126767164062500000\) \([2]\) \(26542080\) \(2.9992\)  
328510.bp2 328510bp2 \([1, -1, 1, -2570388, 1345582967]\) \(39920686684059609/6492304000000\) \(305436161399824000000\) \([2, 2]\) \(13271040\) \(2.6526\)  
328510.bp3 328510bp1 \([1, -1, 1, -722068, -215877769]\) \(884984855328729/83492864000\) \(3927995344093184000\) \([2]\) \(6635520\) \(2.3060\) \(\Gamma_0(N)\)-optimal
328510.bp4 328510bp4 \([1, -1, 1, 4649612, 7537454967]\) \(236293804275620391/658593925444000\) \(-30984131443761296164000\) \([2]\) \(26542080\) \(2.9992\)