# Properties

 Label 327990z1 Conductor $327990$ Discriminant $-2.695\times 10^{24}$ j-invariant $$-\frac{40861808665609}{6406452000}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -53768091, 171055701513])

gp: E = ellinit([1, 1, 1, -53768091, 171055701513])

magma: E := EllipticCurve([1, 1, 1, -53768091, 171055701513]);

$$y^2+xy+y=x^3+x^2-53768091x+171055701513$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(8233, 531158\right)$$ $\hat{h}(P)$ ≈ $5.2013908522214700763148563580$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(8233, 531158\right)$$, $$\left(8233, -539392\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$327990$$ = $2 \cdot 3 \cdot 5 \cdot 13 \cdot 29^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-2695240696190539296852000$ = $-1 \cdot 2^{5} \cdot 3^{6} \cdot 5^{3} \cdot 13^{3} \cdot 29^{10}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{40861808665609}{6406452000}$$ = $-1 \cdot 2^{-5} \cdot 3^{-6} \cdot 5^{-3} \cdot 13^{-3} \cdot 29^{2} \cdot 41^{3} \cdot 89^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $3.4163257366429265501041951852\dots$ Stable Faltings height: $0.61024587832086486078480182490\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $5.2013908522214700763148563580\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.078008194676338688500212985510\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $30$  = $5\cdot2\cdot1\cdot3\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $12.172533305634589081405149710967507246$

## Modular invariants

Modular form 327990.2.a.z

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 2 q^{7} + q^{8} + q^{9} - q^{10} - q^{12} + q^{13} + 2 q^{14} + q^{15} + q^{16} + 6 q^{17} + q^{18} - 2 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 65772000 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $5$ $I_{5}$ Split multiplicative -1 1 5 5
$3$ $2$ $I_{6}$ Non-split multiplicative 1 1 6 6
$5$ $1$ $I_{3}$ Non-split multiplicative 1 1 3 3
$13$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$29$ $1$ $II^{*}$ Additive 1 2 10 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 3.4.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 327990z consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{29})$$ $$\Z/3\Z$$ Not in database $3$ 3.1.437320.1 $$\Z/2\Z$$ Not in database $6$ 6.0.99449366848000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $6$ 6.0.8860816368.1 $$\Z/3\Z$$ Not in database $6$ 6.2.5546214689600.2 $$\Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $12$ Deg 12 $$\Z/3\Z \times \Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/6\Z$$ Not in database $18$ 18.6.10596630796030234201403557851487007115952358301793536.2 $$\Z/9\Z$$ Not in database $18$ 18.0.859649248947095901449431076116211171328000000.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.