Properties

Label 327990m
Number of curves $2$
Conductor $327990$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 327990m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327990.m2 327990m1 \([1, 0, 1, 3346, -206548]\) \(6967871/35100\) \(-20878298567100\) \([2]\) \(1188096\) \(1.2380\) \(\Gamma_0(N)\)-optimal
327990.m1 327990m2 \([1, 0, 1, -38704, -2628628]\) \(10779215329/1232010\) \(732828279705210\) \([2]\) \(2376192\) \(1.5846\)  

Rank

sage: E.rank()
 

The elliptic curves in class 327990m have rank \(0\).

Complex multiplication

The elliptic curves in class 327990m do not have complex multiplication.

Modular form 327990.2.a.m

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 2q^{7} - q^{8} + q^{9} + q^{10} - 4q^{11} + q^{12} - q^{13} - 2q^{14} - q^{15} + q^{16} - 8q^{17} - q^{18} + 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.