Properties

Label 327990.v
Number of curves $1$
Conductor $327990$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 327990.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327990.v1 327990v1 \([1, 0, 1, -23001368, -91116025342]\) \(-3198929765521/6673387500\) \(-2807542391865145100887500\) \([]\) \(102312000\) \(3.3803\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 327990.v1 has rank \(0\).

Complex multiplication

The elliptic curves in class 327990.v do not have complex multiplication.

Modular form 327990.2.a.v

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 5q^{7} - q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + q^{13} - 5q^{14} + q^{15} + q^{16} + 2q^{17} - q^{18} + 4q^{19} + O(q^{20})\)  Toggle raw display