Properties

Label 327990.q
Number of curves $1$
Conductor $327990$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 327990.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327990.q1 327990q1 \([1, 0, 1, -3614059163928, 2644354988241292006]\) \(12408792056705068124806972561/700876800000000000000\) \(294863939412298316236800000000000000\) \([]\) \(9860928000\) \(5.8704\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 327990.q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 327990.q do not have complex multiplication.

Modular form 327990.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 3q^{7} - q^{8} + q^{9} - q^{10} + 4q^{11} + q^{12} + q^{13} + 3q^{14} + q^{15} + q^{16} - 3q^{17} - q^{18} - 4q^{19} + O(q^{20})\)  Toggle raw display