Properties

Label 327990.k
Number of curves $1$
Conductor $327990$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 327990.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327990.k1 327990k1 \([1, 1, 0, -7557, -164061]\) \(56763056858641/19548576450\) \(16440352794450\) \([]\) \(1221120\) \(1.2377\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 327990.k1 has rank \(1\).

Complex multiplication

The elliptic curves in class 327990.k do not have complex multiplication.

Modular form 327990.2.a.k

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + 5q^{7} - q^{8} + q^{9} - q^{10} - 4q^{11} - q^{12} + q^{13} - 5q^{14} - q^{15} + q^{16} - 3q^{17} - q^{18} - 4q^{19} + O(q^{20})\)  Toggle raw display