Properties

Label 327990.bm
Number of curves $1$
Conductor $327990$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bm1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 327990.bm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
327990.bm1 327990bm1 \([1, 0, 0, -18775496161, -753241578520759]\) \(1739874810731935427689/424271925913680000\) \(178494268118092166078652649680000\) \([]\) \(1114713600\) \(4.8992\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 327990.bm1 has rank \(0\).

Complex multiplication

The elliptic curves in class 327990.bm do not have complex multiplication.

Modular form 327990.2.a.bm

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + 2q^{11} + q^{12} + q^{13} + q^{14} - q^{15} + q^{16} - 3q^{17} + q^{18} + 2q^{19} + O(q^{20})\)  Toggle raw display