Properties

Label 3276.g
Number of curves $1$
Conductor $3276$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3276.g1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3276.g do not have complex multiplication.

Modular form 3276.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - 2 q^{11} + q^{13} + 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3276.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3276.g1 3276g1 \([0, 0, 0, -17832, -2301388]\) \(-3360132358144/10315633419\) \(-1925144771187456\) \([]\) \(11520\) \(1.6195\) \(\Gamma_0(N)\)-optimal