Properties

Label 3276.c
Number of curves $1$
Conductor $3276$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 3276.c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3276.c do not have complex multiplication.

Modular form 3276.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} + 6 q^{11} - q^{13} + 8 q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 3276.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3276.c1 3276i1 \([0, 0, 0, -3288, 74324]\) \(-21064523776/597051\) \(-111424045824\) \([]\) \(4608\) \(0.89974\) \(\Gamma_0(N)\)-optimal