Properties

Label 3264.i
Number of curves $4$
Conductor $3264$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 3264.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3264.i1 3264a3 \([0, -1, 0, -48033, -3047391]\) \(46753267515625/11591221248\) \(3038569102835712\) \([2]\) \(13824\) \(1.6811\)  
3264.i2 3264a1 \([0, -1, 0, -16353, 810081]\) \(1845026709625/793152\) \(207920037888\) \([2]\) \(4608\) \(1.1318\) \(\Gamma_0(N)\)-optimal
3264.i3 3264a2 \([0, -1, 0, -13793, 1069665]\) \(-1107111813625/1228691592\) \(-322094128693248\) \([2]\) \(9216\) \(1.4784\)  
3264.i4 3264a4 \([0, -1, 0, 115807, -19464159]\) \(655215969476375/1001033261568\) \(-262414863320481792\) \([2]\) \(27648\) \(2.0277\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3264.i have rank \(1\).

Complex multiplication

The elliptic curves in class 3264.i do not have complex multiplication.

Modular form 3264.2.a.i

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} + q^{9} - 2 q^{13} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.