Show commands:
SageMath
E = EllipticCurve("bf1")
E.isogeny_class()
Elliptic curves in class 3264.bf
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3264.bf1 | 3264o1 | \([0, 1, 0, -161, 447]\) | \(1771561/612\) | \(160432128\) | \([2]\) | \(1536\) | \(0.27619\) | \(\Gamma_0(N)\)-optimal |
3264.bf2 | 3264o2 | \([0, 1, 0, 479, 3647]\) | \(46268279/46818\) | \(-12273057792\) | \([2]\) | \(3072\) | \(0.62277\) |
Rank
sage: E.rank()
The elliptic curves in class 3264.bf have rank \(0\).
Complex multiplication
The elliptic curves in class 3264.bf do not have complex multiplication.Modular form 3264.2.a.bf
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.