Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
3264.a1 |
3264e2 |
3264.a |
3264e |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$3.542758762$ |
$1$ |
|
$2$ |
$864$ |
$0.087350$ |
$-23100424192/14739$ |
$1.03897$ |
$3.46362$ |
$[0, -1, 0, -237, -1329]$ |
\(y^2=x^3-x^2-237x-1329\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 102.8.0.?, 408.16.0.? |
$[(26, 97)]$ |
3264.a2 |
3264e1 |
3264.a |
3264e |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$1.180919587$ |
$1$ |
|
$2$ |
$288$ |
$-0.461956$ |
$32768/459$ |
$1.01165$ |
$2.18775$ |
$[0, -1, 0, 3, -9]$ |
\(y^2=x^3-x^2+3x-9\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 102.8.0.?, 408.16.0.? |
$[(2, 1)]$ |
3264.b1 |
3264s1 |
3264.b |
3264s |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{14} \cdot 3^{3} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.952586$ |
$57530252288/38336139$ |
$1.04113$ |
$4.26163$ |
$[0, -1, 0, 2043, 13149]$ |
\(y^2=x^3-x^2+2043x+13149\) |
102.2.0.? |
$[ ]$ |
3264.c1 |
3264i3 |
3264.c |
3264i |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{17} \cdot 3^{8} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.63 |
2B |
$136$ |
$48$ |
$0$ |
$2.450903625$ |
$1$ |
|
$17$ |
$4096$ |
$0.798878$ |
$22994537186/111537$ |
$1.03807$ |
$4.40530$ |
$[0, -1, 0, -3009, -62271]$ |
\(y^2=x^3-x^2-3009x-62271\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.m.1.3, 136.48.0.? |
$[(-31, 16), (65, 112)]$ |
3264.c2 |
3264i2 |
3264.c |
3264i |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{16} \cdot 3^{4} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.3 |
2Cs |
$136$ |
$48$ |
$0$ |
$2.450903625$ |
$1$ |
|
$23$ |
$2048$ |
$0.452304$ |
$40873252/23409$ |
$1.13826$ |
$3.53694$ |
$[0, -1, 0, -289, 289]$ |
\(y^2=x^3-x^2-289x+289\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.1, 68.24.0-68.b.1.3, 136.48.0.? |
$[(0, 17), (-8, 45)]$ |
3264.c3 |
3264i1 |
3264.c |
3264i |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{14} \cdot 3^{2} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.104 |
2B |
$136$ |
$48$ |
$0$ |
$0.612725906$ |
$1$ |
|
$23$ |
$1024$ |
$0.105731$ |
$61918288/153$ |
$0.87866$ |
$3.41693$ |
$[0, -1, 0, -209, 1233]$ |
\(y^2=x^3-x^2-209x+1233\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.7, 34.6.0.a.1, 68.12.0.g.1, $\ldots$ |
$[(11, 12), (8, 3)]$ |
3264.c4 |
3264i4 |
3264.c |
3264i |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{17} \cdot 3^{2} \cdot 17^{4} \) |
$2$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.48 |
2B |
$136$ |
$48$ |
$0$ |
$2.450903625$ |
$1$ |
|
$29$ |
$4096$ |
$0.798878$ |
$1285471294/751689$ |
$1.05433$ |
$4.04883$ |
$[0, -1, 0, 1151, 1153]$ |
\(y^2=x^3-x^2+1151x+1153\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.d.1.2, 136.48.0.? |
$[(1, 48), (97, 1008)]$ |
3264.d1 |
3264v4 |
3264.d |
3264v |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{15} \cdot 3^{2} \cdot 17 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.50 |
2B |
$136$ |
$48$ |
$0$ |
$2.658254430$ |
$1$ |
|
$7$ |
$2048$ |
$0.687272$ |
$939464338184/153$ |
$0.98543$ |
$4.69252$ |
$[0, -1, 0, -6529, 205249]$ |
\(y^2=x^3-x^2-6529x+205249\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.p.1.1, 136.48.0.? |
$[(63, 200)]$ |
3264.d2 |
3264v3 |
3264.d |
3264v |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{15} \cdot 3^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.58 |
2B |
$136$ |
$48$ |
$0$ |
$0.664563607$ |
$1$ |
|
$9$ |
$2048$ |
$0.687272$ |
$1536800264/751689$ |
$0.97380$ |
$3.89956$ |
$[0, -1, 0, -769, -2975]$ |
\(y^2=x^3-x^2-769x-2975\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.k.1.1, 136.48.0.? |
$[(-8, 51)]$ |
3264.d3 |
3264v2 |
3264.d |
3264v |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{12} \cdot 3^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.1 |
2Cs |
$136$ |
$48$ |
$0$ |
$1.329127215$ |
$1$ |
|
$9$ |
$1024$ |
$0.340699$ |
$1851804352/23409$ |
$1.01952$ |
$3.66559$ |
$[0, -1, 0, -409, 3289]$ |
\(y^2=x^3-x^2-409x+3289\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.2, 68.24.0-68.a.1.3, 136.48.0.? |
$[(9, 16)]$ |
3264.d4 |
3264v1 |
3264.d |
3264v |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.103 |
2B |
$136$ |
$48$ |
$0$ |
$2.658254430$ |
$1$ |
|
$3$ |
$512$ |
$-0.005875$ |
$-140608/111537$ |
$1.18686$ |
$2.87199$ |
$[0, -1, 0, -4, 130]$ |
\(y^2=x^3-x^2-4x+130\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.7, 68.12.0.h.1, 136.48.0.? |
$[(11, 36)]$ |
3264.e1 |
3264r1 |
3264.e |
3264r |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.095931$ |
$559476224/334611$ |
$1.02980$ |
$3.00362$ |
$[0, -1, 0, 69, -63]$ |
\(y^2=x^3-x^2+69x-63\) |
102.2.0.? |
$[ ]$ |
3264.f1 |
3264g1 |
3264.f |
3264g |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{14} \cdot 3 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$-0.164968$ |
$-65536/51$ |
$1.18457$ |
$2.67549$ |
$[0, -1, 0, -21, -51]$ |
\(y^2=x^3-x^2-21x-51\) |
102.2.0.? |
$[ ]$ |
3264.g1 |
3264c1 |
3264.g |
3264c |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{12} \cdot 3^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$0.658641263$ |
$1$ |
|
$7$ |
$1536$ |
$0.465489$ |
$166375000000/1377$ |
$1.15444$ |
$4.22154$ |
$[0, -1, 0, -1833, 30825]$ |
\(y^2=x^3-x^2-1833x+30825\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[(24, 9)]$ |
3264.g2 |
3264c2 |
3264.g |
3264c |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{15} \cdot 3^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$1.317282527$ |
$1$ |
|
$5$ |
$3072$ |
$0.812062$ |
$-19465109000/1896129$ |
$0.95839$ |
$4.23259$ |
$[0, -1, 0, -1793, 32193]$ |
\(y^2=x^3-x^2-1793x+32193\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[(19, 68)]$ |
3264.h1 |
3264b1 |
3264.h |
3264b |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{16} \cdot 3^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$1.204472877$ |
$1$ |
|
$5$ |
$512$ |
$0.152840$ |
$12194500/153$ |
$0.87537$ |
$3.38745$ |
$[0, -1, 0, -193, -959]$ |
\(y^2=x^3-x^2-193x-959\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[(-8, 3)]$ |
3264.h2 |
3264b2 |
3264.h |
3264b |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{17} \cdot 3^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$2.408945754$ |
$1$ |
|
$5$ |
$1024$ |
$0.499413$ |
$-31250/23409$ |
$1.14865$ |
$3.62142$ |
$[0, -1, 0, -33, -2655]$ |
\(y^2=x^3-x^2-33x-2655\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[(24, 99)]$ |
3264.i1 |
3264a3 |
3264.i |
3264a |
$4$ |
$6$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{36} \cdot 3^{2} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$4.719865437$ |
$1$ |
|
$3$ |
$13824$ |
$1.681147$ |
$46753267515625/11591221248$ |
$1.08666$ |
$5.43247$ |
$[0, -1, 0, -48033, -3047391]$ |
\(y^2=x^3-x^2-48033x-3047391\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.8, $\ldots$ |
$[(-120, 987)]$ |
3264.i2 |
3264a1 |
3264.i |
3264a |
$4$ |
$6$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{24} \cdot 3^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$1.573288479$ |
$1$ |
|
$5$ |
$4608$ |
$1.131842$ |
$1845026709625/793152$ |
$1.00293$ |
$5.03295$ |
$[0, -1, 0, -16353, 810081]$ |
\(y^2=x^3-x^2-16353x+810081\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.2, $\ldots$ |
$[(72, 27)]$ |
3264.i3 |
3264a2 |
3264.i |
3264a |
$4$ |
$6$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{21} \cdot 3^{12} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$3.146576958$ |
$1$ |
|
$5$ |
$9216$ |
$1.478415$ |
$-1107111813625/1228691592$ |
$1.01884$ |
$5.10218$ |
$[0, -1, 0, -13793, 1069665]$ |
\(y^2=x^3-x^2-13793x+1069665\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.10, $\ldots$ |
$[(-77, 1292)]$ |
3264.i4 |
3264a4 |
3264.i |
3264a |
$4$ |
$6$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{27} \cdot 3^{4} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$9.439730874$ |
$1$ |
|
$1$ |
$27648$ |
$2.027721$ |
$655215969476375/1001033261568$ |
$1.05358$ |
$5.81993$ |
$[0, -1, 0, 115807, -19464159]$ |
\(y^2=x^3-x^2+115807x-19464159\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.4, $\ldots$ |
$[(26888/7, 4958829/7)]$ |
3264.j1 |
3264q1 |
3264.j |
3264q |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{14} \cdot 3^{11} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4224$ |
$0.948475$ |
$-1841198792704/3011499$ |
$1.22809$ |
$4.69036$ |
$[0, -1, 0, -6485, 203469]$ |
\(y^2=x^3-x^2-6485x+203469\) |
102.2.0.? |
$[ ]$ |
3264.k1 |
3264u1 |
3264.k |
3264u |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.802155485$ |
$1$ |
|
$2$ |
$192$ |
$-0.303050$ |
$-76225024/459$ |
$0.89773$ |
$2.75853$ |
$[0, -1, 0, -35, 93]$ |
\(y^2=x^3-x^2-35x+93\) |
102.2.0.? |
$[(4, 1)]$ |
3264.l1 |
3264f1 |
3264.l |
3264f |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{5} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$960$ |
$0.197892$ |
$-292754944/1193859$ |
$0.98123$ |
$3.18130$ |
$[0, -1, 0, -55, -431]$ |
\(y^2=x^3-x^2-55x-431\) |
102.2.0.? |
$[ ]$ |
3264.m1 |
3264h5 |
3264.m |
3264h |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{19} \cdot 3^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.156 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$24576$ |
$1.886799$ |
$2361739090258884097/5202$ |
$1.06083$ |
$6.77105$ |
$[0, -1, 0, -1775617, -910101503]$ |
\(y^2=x^3-x^2-1775617x-910101503\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.r.1.1, 16.96.0-16.l.2.2, 136.96.0.?, $\ldots$ |
$[ ]$ |
3264.m2 |
3264h3 |
3264.m |
3264h |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{20} \cdot 3^{4} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.12 |
2Cs |
$136$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$3$ |
$12288$ |
$1.540226$ |
$576615941610337/27060804$ |
$1.03156$ |
$5.74299$ |
$[0, -1, 0, -110977, -14192255]$ |
\(y^2=x^3-x^2-110977x-14192255\) |
2.6.0.a.1, 4.24.0-4.b.1.2, 8.96.0-8.e.1.7, 136.192.1.? |
$[ ]$ |
3264.m3 |
3264h6 |
3264.m |
3264h |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{19} \cdot 3^{2} \cdot 17^{8} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.160 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$3$ |
$24576$ |
$1.886799$ |
$-491411892194497/125563633938$ |
$1.03624$ |
$5.76843$ |
$[0, -1, 0, -105217, -15737087]$ |
\(y^2=x^3-x^2-105217x-15737087\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.96.0-8.m.2.3, 272.192.1.? |
$[ ]$ |
3264.m4 |
3264h2 |
3264.m |
3264h |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{22} \cdot 3^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.131 |
2Cs |
$136$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$3$ |
$6144$ |
$1.193651$ |
$163936758817/30338064$ |
$1.07571$ |
$4.73375$ |
$[0, -1, 0, -7297, -195455]$ |
\(y^2=x^3-x^2-7297x-195455\) |
2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.h.2.3, 68.24.0.c.1, 136.192.1.? |
$[ ]$ |
3264.m5 |
3264h1 |
3264.m |
3264h |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{26} \cdot 3^{4} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.256 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$0.847078$ |
$4354703137/352512$ |
$1.05192$ |
$4.28531$ |
$[0, -1, 0, -2177, 36993]$ |
\(y^2=x^3-x^2-2177x+36993\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.1.7, 16.96.0-16.bb.1.7, 34.6.0.a.1, $\ldots$ |
$[ ]$ |
3264.m6 |
3264h4 |
3264.m |
3264h |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{20} \cdot 3^{16} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.289 |
2B |
$272$ |
$192$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$12288$ |
$1.540226$ |
$1276229915423/2927177028$ |
$1.03010$ |
$5.12167$ |
$[0, -1, 0, 14463, -1157247]$ |
\(y^2=x^3-x^2+14463x-1157247\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.ba.2.5, 16.96.0-16.y.2.5, 68.12.0.h.1, $\ldots$ |
$[ ]$ |
3264.n1 |
3264j1 |
3264.n |
3264j |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{14} \cdot 3^{5} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1280$ |
$0.192570$ |
$-2249728/4131$ |
$0.90547$ |
$3.18378$ |
$[0, -1, 0, -69, 477]$ |
\(y^2=x^3-x^2-69x+477\) |
102.2.0.? |
$[ ]$ |
3264.o1 |
3264d1 |
3264.o |
3264d |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1.527930549$ |
$1$ |
|
$2$ |
$192$ |
$-0.646345$ |
$512/51$ |
$0.87758$ |
$1.92067$ |
$[0, -1, 0, 1, -3]$ |
\(y^2=x^3-x^2+x-3\) |
102.2.0.? |
$[(4, 7)]$ |
3264.p1 |
3264t1 |
3264.p |
3264t |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{20} \cdot 3^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1536$ |
$0.276193$ |
$1771561/612$ |
$1.28490$ |
$3.32035$ |
$[0, -1, 0, -161, -447]$ |
\(y^2=x^3-x^2-161x-447\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[ ]$ |
3264.p2 |
3264t2 |
3264.p |
3264t |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{19} \cdot 3^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3072$ |
$0.622766$ |
$46268279/46818$ |
$0.94894$ |
$3.72361$ |
$[0, -1, 0, 479, -3647]$ |
\(y^2=x^3-x^2+479x-3647\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[ ]$ |
3264.q1 |
3264n1 |
3264.q |
3264n |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{14} \cdot 3^{3} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.952586$ |
$57530252288/38336139$ |
$1.04113$ |
$4.26163$ |
$[0, 1, 0, 2043, -13149]$ |
\(y^2=x^3+x^2+2043x-13149\) |
102.2.0.? |
$[ ]$ |
3264.r1 |
3264z2 |
3264.r |
3264z |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$1.351542505$ |
$1$ |
|
$2$ |
$864$ |
$0.087350$ |
$-23100424192/14739$ |
$1.03897$ |
$3.46362$ |
$[0, 1, 0, -237, 1329]$ |
\(y^2=x^3+x^2-237x+1329\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 102.8.0.?, 408.16.0.? |
$[(8, 3)]$ |
3264.r2 |
3264z1 |
3264.r |
3264z |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$408$ |
$16$ |
$0$ |
$0.450514168$ |
$1$ |
|
$4$ |
$288$ |
$-0.461956$ |
$32768/459$ |
$1.01165$ |
$2.18775$ |
$[0, 1, 0, 3, 9]$ |
\(y^2=x^3+x^2+3x+9\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 102.8.0.?, 408.16.0.? |
$[(0, 3)]$ |
3264.s1 |
3264bd3 |
3264.s |
3264bd |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{15} \cdot 3^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.60 |
2B |
$136$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$2048$ |
$0.687272$ |
$939464338184/153$ |
$0.98543$ |
$4.69252$ |
$[0, 1, 0, -6529, -205249]$ |
\(y^2=x^3+x^2-6529x-205249\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.p.1.3, 136.48.0.? |
$[ ]$ |
3264.s2 |
3264bd4 |
3264.s |
3264bd |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{15} \cdot 3^{2} \cdot 17^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.49 |
2B |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$2048$ |
$0.687272$ |
$1536800264/751689$ |
$0.97380$ |
$3.89956$ |
$[0, 1, 0, -769, 2975]$ |
\(y^2=x^3+x^2-769x+2975\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.k.1.2, 136.48.0.? |
$[ ]$ |
3264.s3 |
3264bd2 |
3264.s |
3264bd |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{12} \cdot 3^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.2 |
2Cs |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$1024$ |
$0.340699$ |
$1851804352/23409$ |
$1.01952$ |
$3.66559$ |
$[0, 1, 0, -409, -3289]$ |
\(y^2=x^3+x^2-409x-3289\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.1, 68.24.0-68.a.1.3, 136.48.0.? |
$[ ]$ |
3264.s4 |
3264bd1 |
3264.s |
3264bd |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.101 |
2B |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$512$ |
$-0.005875$ |
$-140608/111537$ |
$1.18686$ |
$2.87199$ |
$[0, 1, 0, -4, -130]$ |
\(y^2=x^3+x^2-4x-130\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.5, 68.12.0.h.1, 136.48.0.? |
$[ ]$ |
3264.t1 |
3264be3 |
3264.t |
3264be |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{17} \cdot 3^{8} \cdot 17 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.53 |
2B |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$4096$ |
$0.798878$ |
$22994537186/111537$ |
$1.03807$ |
$4.40530$ |
$[0, 1, 0, -3009, 62271]$ |
\(y^2=x^3+x^2-3009x+62271\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.m.1.1, 136.48.0.? |
$[ ]$ |
3264.t2 |
3264be2 |
3264.t |
3264be |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{16} \cdot 3^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.4 |
2Cs |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$2048$ |
$0.452304$ |
$40873252/23409$ |
$1.13826$ |
$3.53694$ |
$[0, 1, 0, -289, -289]$ |
\(y^2=x^3+x^2-289x-289\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.2, 68.24.0-68.b.1.3, 136.48.0.? |
$[ ]$ |
3264.t3 |
3264be1 |
3264.t |
3264be |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{14} \cdot 3^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.102 |
2B |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1024$ |
$0.105731$ |
$61918288/153$ |
$0.87866$ |
$3.41693$ |
$[0, 1, 0, -209, -1233]$ |
\(y^2=x^3+x^2-209x-1233\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.5, 34.6.0.a.1, 68.12.0.g.1, $\ldots$ |
$[ ]$ |
3264.t4 |
3264be4 |
3264.t |
3264be |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{17} \cdot 3^{2} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.59 |
2B |
$136$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4096$ |
$0.798878$ |
$1285471294/751689$ |
$1.05433$ |
$4.04883$ |
$[0, 1, 0, 1151, -1153]$ |
\(y^2=x^3+x^2+1151x-1153\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.d.1.1, 136.48.0.? |
$[ ]$ |
3264.u1 |
3264bb1 |
3264.u |
3264bb |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{14} \cdot 3 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$384$ |
$-0.164968$ |
$-65536/51$ |
$1.18457$ |
$2.67549$ |
$[0, 1, 0, -21, 51]$ |
\(y^2=x^3+x^2-21x+51\) |
102.2.0.? |
$[ ]$ |
3264.v1 |
3264y1 |
3264.v |
3264y |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{6} \cdot 3^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.329702976$ |
$1$ |
|
$4$ |
$576$ |
$0.095931$ |
$559476224/334611$ |
$1.02980$ |
$3.00362$ |
$[0, 1, 0, 69, 63]$ |
\(y^2=x^3+x^2+69x+63\) |
102.2.0.? |
$[(6, 27)]$ |
3264.w1 |
3264x3 |
3264.w |
3264x |
$4$ |
$6$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{36} \cdot 3^{2} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$4.545067097$ |
$1$ |
|
$3$ |
$13824$ |
$1.681147$ |
$46753267515625/11591221248$ |
$1.08666$ |
$5.43247$ |
$[0, 1, 0, -48033, 3047391]$ |
\(y^2=x^3+x^2-48033x+3047391\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.5, $\ldots$ |
$[(-171, 2508)]$ |
3264.w2 |
3264x1 |
3264.w |
3264x |
$4$ |
$6$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( 2^{24} \cdot 3^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$1.515022365$ |
$1$ |
|
$5$ |
$4608$ |
$1.131842$ |
$1845026709625/793152$ |
$1.00293$ |
$5.03295$ |
$[0, 1, 0, -16353, -810081]$ |
\(y^2=x^3+x^2-16353x-810081\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.11, $\ldots$ |
$[(-75, 12)]$ |
3264.w3 |
3264x2 |
3264.w |
3264x |
$4$ |
$6$ |
\( 2^{6} \cdot 3 \cdot 17 \) |
\( - 2^{21} \cdot 3^{12} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$408$ |
$96$ |
$1$ |
$0.757511182$ |
$1$ |
|
$9$ |
$9216$ |
$1.478415$ |
$-1107111813625/1228691592$ |
$1.01884$ |
$5.10218$ |
$[0, 1, 0, -13793, -1069665]$ |
\(y^2=x^3+x^2-13793x-1069665\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 8.6.0.a.1, 24.48.0-24.p.1.1, $\ldots$ |
$[(247, 3264)]$ |