Learn more

Refine search


Results (1-50 of 68 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
3264.a1 3264.a \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\mathsf{trivial}$ $3.542758762$ $[0, -1, 0, -237, -1329]$ \(y^2=x^3-x^2-237x-1329\) 3.4.0.a.1, 24.8.0-3.a.1.1, 102.8.0.?, 408.16.0.?
3264.a2 3264.a \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.180919587$ $[0, -1, 0, 3, -9]$ \(y^2=x^3-x^2+3x-9\) 3.4.0.a.1, 24.8.0-3.a.1.2, 102.8.0.?, 408.16.0.?
3264.b1 3264.b \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 2043, 13149]$ \(y^2=x^3-x^2+2043x+13149\) 102.2.0.?
3264.c1 3264.c \( 2^{6} \cdot 3 \cdot 17 \) $2$ $\Z/2\Z$ $2.450903625$ $[0, -1, 0, -3009, -62271]$ \(y^2=x^3-x^2-3009x-62271\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.m.1.3, 136.48.0.?
3264.c2 3264.c \( 2^{6} \cdot 3 \cdot 17 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $2.450903625$ $[0, -1, 0, -289, 289]$ \(y^2=x^3-x^2-289x+289\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.1, 68.24.0-68.b.1.3, 136.48.0.?
3264.c3 3264.c \( 2^{6} \cdot 3 \cdot 17 \) $2$ $\Z/2\Z$ $0.612725906$ $[0, -1, 0, -209, 1233]$ \(y^2=x^3-x^2-209x+1233\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.7, 34.6.0.a.1, 68.12.0.g.1, $\ldots$
3264.c4 3264.c \( 2^{6} \cdot 3 \cdot 17 \) $2$ $\Z/4\Z$ $2.450903625$ $[0, -1, 0, 1151, 1153]$ \(y^2=x^3-x^2+1151x+1153\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.d.1.2, 136.48.0.?
3264.d1 3264.d \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/4\Z$ $2.658254430$ $[0, -1, 0, -6529, 205249]$ \(y^2=x^3-x^2-6529x+205249\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.p.1.1, 136.48.0.?
3264.d2 3264.d \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $0.664563607$ $[0, -1, 0, -769, -2975]$ \(y^2=x^3-x^2-769x-2975\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.k.1.1, 136.48.0.?
3264.d3 3264.d \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.329127215$ $[0, -1, 0, -409, 3289]$ \(y^2=x^3-x^2-409x+3289\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.2, 68.24.0-68.a.1.3, 136.48.0.?
3264.d4 3264.d \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $2.658254430$ $[0, -1, 0, -4, 130]$ \(y^2=x^3-x^2-4x+130\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.7, 68.12.0.h.1, 136.48.0.?
3264.e1 3264.e \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 69, -63]$ \(y^2=x^3-x^2+69x-63\) 102.2.0.?
3264.f1 3264.f \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -21, -51]$ \(y^2=x^3-x^2-21x-51\) 102.2.0.?
3264.g1 3264.g \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $0.658641263$ $[0, -1, 0, -1833, 30825]$ \(y^2=x^3-x^2-1833x+30825\) 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.?
3264.g2 3264.g \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $1.317282527$ $[0, -1, 0, -1793, 32193]$ \(y^2=x^3-x^2-1793x+32193\) 2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.?
3264.h1 3264.h \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $1.204472877$ $[0, -1, 0, -193, -959]$ \(y^2=x^3-x^2-193x-959\) 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.?
3264.h2 3264.h \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $2.408945754$ $[0, -1, 0, -33, -2655]$ \(y^2=x^3-x^2-33x-2655\) 2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.?
3264.i1 3264.i \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $4.719865437$ $[0, -1, 0, -48033, -3047391]$ \(y^2=x^3-x^2-48033x-3047391\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.8, $\ldots$
3264.i2 3264.i \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $1.573288479$ $[0, -1, 0, -16353, 810081]$ \(y^2=x^3-x^2-16353x+810081\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.2, $\ldots$
3264.i3 3264.i \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $3.146576958$ $[0, -1, 0, -13793, 1069665]$ \(y^2=x^3-x^2-13793x+1069665\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.10, $\ldots$
3264.i4 3264.i \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $9.439730874$ $[0, -1, 0, 115807, -19464159]$ \(y^2=x^3-x^2+115807x-19464159\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 12.24.0-6.a.1.4, $\ldots$
3264.j1 3264.j \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -6485, 203469]$ \(y^2=x^3-x^2-6485x+203469\) 102.2.0.?
3264.k1 3264.k \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.802155485$ $[0, -1, 0, -35, 93]$ \(y^2=x^3-x^2-35x+93\) 102.2.0.?
3264.l1 3264.l \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -55, -431]$ \(y^2=x^3-x^2-55x-431\) 102.2.0.?
3264.m1 3264.m \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1775617, -910101503]$ \(y^2=x^3-x^2-1775617x-910101503\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.r.1.1, 16.96.0-16.l.2.2, 136.96.0.?, $\ldots$
3264.m2 3264.m \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -110977, -14192255]$ \(y^2=x^3-x^2-110977x-14192255\) 2.6.0.a.1, 4.24.0-4.b.1.2, 8.96.0-8.e.1.7, 136.192.1.?
3264.m3 3264.m \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -105217, -15737087]$ \(y^2=x^3-x^2-105217x-15737087\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.96.0-8.m.2.3, 272.192.1.?
3264.m4 3264.m \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -7297, -195455]$ \(y^2=x^3-x^2-7297x-195455\) 2.6.0.a.1, 4.12.0.b.1, 8.96.0-8.h.2.3, 68.24.0.c.1, 136.192.1.?
3264.m5 3264.m \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2177, 36993]$ \(y^2=x^3-x^2-2177x+36993\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.1.7, 16.96.0-16.bb.1.7, 34.6.0.a.1, $\ldots$
3264.m6 3264.m \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 14463, -1157247]$ \(y^2=x^3-x^2+14463x-1157247\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.ba.2.5, 16.96.0-16.y.2.5, 68.12.0.h.1, $\ldots$
3264.n1 3264.n \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -69, 477]$ \(y^2=x^3-x^2-69x+477\) 102.2.0.?
3264.o1 3264.o \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.527930549$ $[0, -1, 0, 1, -3]$ \(y^2=x^3-x^2+x-3\) 102.2.0.?
3264.p1 3264.p \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -161, -447]$ \(y^2=x^3-x^2-161x-447\) 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.?
3264.p2 3264.p \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 479, -3647]$ \(y^2=x^3-x^2+479x-3647\) 2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.?
3264.q1 3264.q \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 2043, -13149]$ \(y^2=x^3+x^2+2043x-13149\) 102.2.0.?
3264.r1 3264.r \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\mathsf{trivial}$ $1.351542505$ $[0, 1, 0, -237, 1329]$ \(y^2=x^3+x^2-237x+1329\) 3.4.0.a.1, 24.8.0-3.a.1.3, 102.8.0.?, 408.16.0.?
3264.r2 3264.r \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.450514168$ $[0, 1, 0, 3, 9]$ \(y^2=x^3+x^2+3x+9\) 3.4.0.a.1, 24.8.0-3.a.1.4, 102.8.0.?, 408.16.0.?
3264.s1 3264.s \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -6529, -205249]$ \(y^2=x^3+x^2-6529x-205249\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.p.1.3, 136.48.0.?
3264.s2 3264.s \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -769, 2975]$ \(y^2=x^3+x^2-769x+2975\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.k.1.2, 136.48.0.?
3264.s3 3264.s \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -409, -3289]$ \(y^2=x^3+x^2-409x-3289\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.1, 68.24.0-68.a.1.3, 136.48.0.?
3264.s4 3264.s \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4, -130]$ \(y^2=x^3+x^2-4x-130\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.5, 68.12.0.h.1, 136.48.0.?
3264.t1 3264.t \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -3009, 62271]$ \(y^2=x^3+x^2-3009x+62271\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.m.1.1, 136.48.0.?
3264.t2 3264.t \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -289, -289]$ \(y^2=x^3+x^2-289x-289\) 2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.b.1.2, 68.24.0-68.b.1.3, 136.48.0.?
3264.t3 3264.t \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -209, -1233]$ \(y^2=x^3+x^2-209x-1233\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.m.1.5, 34.6.0.a.1, 68.12.0.g.1, $\ldots$
3264.t4 3264.t \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 1151, -1153]$ \(y^2=x^3+x^2+1151x-1153\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.d.1.1, 136.48.0.?
3264.u1 3264.u \( 2^{6} \cdot 3 \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -21, 51]$ \(y^2=x^3+x^2-21x+51\) 102.2.0.?
3264.v1 3264.v \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\mathsf{trivial}$ $0.329702976$ $[0, 1, 0, 69, 63]$ \(y^2=x^3+x^2+69x+63\) 102.2.0.?
3264.w1 3264.w \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $4.545067097$ $[0, 1, 0, -48033, 3047391]$ \(y^2=x^3+x^2-48033x+3047391\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.5, $\ldots$
3264.w2 3264.w \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $1.515022365$ $[0, 1, 0, -16353, -810081]$ \(y^2=x^3+x^2-16353x-810081\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 12.24.0-6.a.1.11, $\ldots$
3264.w3 3264.w \( 2^{6} \cdot 3 \cdot 17 \) $1$ $\Z/2\Z$ $0.757511182$ $[0, 1, 0, -13793, -1069665]$ \(y^2=x^3+x^2-13793x-1069665\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 8.6.0.a.1, 24.48.0-24.p.1.1, $\ldots$
Next   displayed columns for results