Properties

Label 32490bv2
Conductor $32490$
Discriminant $2.786\times 10^{17}$
j-invariant \( \frac{14688124849}{8122500} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z \times \Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -165767, -5433541]) # or
 
sage: E = EllipticCurve("32490.bu2")
 
gp: E = ellinit([1, -1, 1, -165767, -5433541]) \\ or
 
gp: E = ellinit("32490.bu2")
 
magma: E := EllipticCurve([1, -1, 1, -165767, -5433541]); // or
 
magma: E := EllipticCurve("32490.bu2");
 

\(y^2+xy+y=x^3-x^2-165767x-5433541\)

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(2367, 112216\right) \)
\(\hat{h}(P)\) ≈  $4.2447125711074605198923939741$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-33, 16\right) \), \( \left(423, -212\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-33, 16\right) \), \( \left(423, -212\right) \), \( \left(2367, 112216\right) \), \( \left(2367, -114584\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 32490 \)  =  \(2 \cdot 3^{2} \cdot 5 \cdot 19^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(278572892780002500 \)  =  \(2^{2} \cdot 3^{8} \cdot 5^{4} \cdot 19^{8} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{14688124849}{8122500} \)  =  \(2^{-2} \cdot 3^{-2} \cdot 5^{-4} \cdot 19^{-2} \cdot 31^{3} \cdot 79^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(4.2447125711074605198923939741\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.25337247589750251753765182816\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 128 \)  = \( 2\cdot2^{2}\cdot2^{2}\cdot2^{2} \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(4\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 32490.2.a.bu

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} - 4q^{11} - 2q^{13} + q^{16} - 2q^{17} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 368640
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 8.6039466689180078534606989027354765410 \)

Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \(I_{2}\) Split multiplicative -1 1 2 2
\(3\) \(4\) \(I_2^{*}\) Additive -1 2 8 2
\(5\) \(4\) \(I_{4}\) Split multiplicative -1 1 4 4
\(19\) \(4\) \(I_2^{*}\) Additive -1 2 8 2

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X46a.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 6 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 5 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) Cs

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split add split ss ordinary ordinary ordinary add ordinary ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) 3 - 2 1,3 1 1 1 - 1 1 1 1 1 1 1
$\mu$-invariant(s) 1 - 0 0,0 0 0 0 - 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 32490bv consists of 2 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{114}) \) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(i, \sqrt{57})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{-2}, \sqrt{57})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.691798081536.8 \(\Z/4\Z \times \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.