# Properties

 Label 32490bu1 Conductor $32490$ Discriminant $6.144\times 10^{14}$ j-invariant $$\frac{212883113611}{122880000}$$ CM no Rank $2$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -21272, 65819]) # or

sage: E = EllipticCurve("32490bu1")

gp: E = ellinit([1, -1, 1, -21272, 65819]) \\ or

gp: E = ellinit("32490bu1")

magma: E := EllipticCurve([1, -1, 1, -21272, 65819]); // or

magma: E := EllipticCurve("32490bu1");

$$y^2 + x y + y = x^{3} - x^{2} - 21272 x + 65819$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(237, 2761\right)$$ $$\left(-123, 961\right)$$ $$\hat{h}(P)$$ ≈ $0.3861696611907814$ $0.6248369503047249$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-147, 73\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-147, 73\right)$$, $$\left(-143, 481\right)$$, $$\left(-143, -339\right)$$, $$\left(-123, 961\right)$$, $$\left(-123, -839\right)$$, $$\left(-83, 1161\right)$$, $$\left(-83, -1079\right)$$, $$\left(-71, 1137\right)$$, $$\left(-71, -1067\right)$$, $$\left(-51, 1033\right)$$, $$\left(-51, -983\right)$$, $$\left(-33, 871\right)$$, $$\left(-33, -839\right)$$, $$\left(-3, 361\right)$$, $$\left(-3, -359\right)$$, $$\left(3, 43\right)$$, $$\left(3, -47\right)$$, $$\left(147, 241\right)$$, $$\left(147, -389\right)$$, $$\left(157, 681\right)$$, $$\left(157, -839\right)$$, $$\left(177, 1261\right)$$, $$\left(177, -1439\right)$$, $$\left(237, 2761\right)$$, $$\left(237, -2999\right)$$, $$\left(309, 4633\right)$$, $$\left(309, -4943\right)$$, $$\left(429, 8137\right)$$, $$\left(429, -8567\right)$$, $$\left(537, 11701\right)$$, $$\left(537, -12239\right)$$, $$\left(867, 24721\right)$$, $$\left(867, -25589\right)$$, $$\left(877, 25161\right)$$, $$\left(877, -26039\right)$$, $$\left(1677, 67561\right)$$, $$\left(1677, -69239\right)$$, $$\left(2757, 143161\right)$$, $$\left(2757, -145919\right)$$, $$\left(4557, 305161\right)$$, $$\left(4557, -309719\right)$$, $$\left(10797, 1116361\right)$$, $$\left(10797, -1127159\right)$$, $$\left(11253, 1187953\right)$$, $$\left(11253, -1199207\right)$$, $$\left(25758957, 130722281161\right)$$, $$\left(25758957, -130748040119\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$32490$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 19^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$614425927680000$$ = $$2^{16} \cdot 3^{7} \cdot 5^{4} \cdot 19^{3}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{212883113611}{122880000}$$ = $$2^{-16} \cdot 3^{-1} \cdot 5^{-4} \cdot 7^{3} \cdot 853^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.202316955562$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.437214162549$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$512$$  = $$2^{4}\cdot2^{2}\cdot2^{2}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 32490.2.a.bo

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{4} + q^{5} - 4q^{7} + q^{8} + q^{10} - 6q^{11} - 4q^{13} - 4q^{14} + q^{16} - 6q^{17} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 245760 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$11.3223473018$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$16$$ $$I_{16}$$ Split multiplicative -1 1 16 16
$$3$$ $$4$$ $$I_1^{*}$$ Additive -1 2 7 1
$$5$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$19$$ $$2$$ $$III$$ Additive 1 2 3 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split add split ordinary ordinary ordinary ordinary add ordinary ordinary ss ordinary ordinary ordinary ordinary 3 - 3 2 2 2 2 - 2 2 2,2 2 2 2 2 0 - 0 0 0 0 0 - 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 32490bu consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{57})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$4$ 4.0.329232.1 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.