# Properties

 Label 32490.m Number of curves $2$ Conductor $32490$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("32490.m1")

sage: E.isogeny_class()

## Elliptic curves in class 32490.m

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
32490.m1 32490t2 [1, -1, 0, -86694759, -309885871235]  9338880
32490.m2 32490t1 [1, -1, 0, -7679079, -413058947]  4669440 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 32490.m have rank $$1$$.

## Modular form 32490.2.a.m

sage: E.q_eigenform(10)

$$q - q^{2} + q^{4} + q^{5} - 4q^{7} - q^{8} - q^{10} - 6q^{11} + 4q^{13} + 4q^{14} + q^{16} - 6q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 